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The Legendre-like operators
on tuples of Lagrangians and functions

Abstract. Let Y be a fibred manifold with an m-dimensional basis M . We
describe all Legendre-like operators C, i.e. natural operators transforming
tuples (λ, g) of Lagrangians λ : JsY →

∧m T ∗M and functions g : M → R
(resp. g : Y → R) into Legendre maps C(λ, g) : JsY → SsTM ⊗ V ∗Y ⊗∧m T ∗M . The most important example of such operators is the Legendre
operator (from the variational calculus) being the one in question depending
only on Lagrangians.

1. Introduction. All manifolds and maps between manifolds considered
in this paper are assumed to be smooth (i.e. of class C∞).
Let FMm,n denote the category of fibred manifolds with m-dimensional
bases and n-dimensional fibres and their fibred diffeomorphisms onto open
images.
Given an FMm,n-object Y →M , we have the s-jet prolongation JsY of

Y → M for any positive integer s. Thus JsY is the space of all s-jets jsxσ
at x ∈ M of local sections σ : M → Y of Y → M . If f : Y → Y 1 is an
FMm,n-map with the base map f : M → M1, then we have the induced
fibred map Jsf : JsY → JsY1 given by Jrf(jsxo

σ) = jsf(xo)
(f ◦ σ ◦ f−1),

2010 Mathematics Subject Classification. 58A20, 58E30.
Key words and phrases. Fibred manifolds, Lagrangians, Legendre maps, natural oper-

ators, Legendre transformation.



2 M. Doupovec, J. Kurek and W. M. Mikulski

jsxo
σ ∈ Js

xo
Y , xo ∈M . So, we have the bundle functor Jr : FMm,n → FM

in the sense of [2].
Given an FMm,n-object Y →M , we also have the vertical bundle V Y →

Y and its dual bundle V ∗Y → Y and the cotangent bundle T ∗M and itsmth
inner product

∧m T ∗M and the tangent bundle TM and its sth symmetric
product SsTM .
Given fibred manifolds Z1 → M and Z2 → M with the same basis M ,
let C∞

M (Z1, Z2) denote the space of all base preserving fibred maps of Z1

into Z2. Elements from the space C∞
M (JsY,

∧m T ∗M) are called (sth order)
Lagrangians on Y →M . Elements from the space C∞

Y (JsY, SsTM ⊗V ∗Y ⊗∧m T ∗M) are called Legendre maps on Y →M .
Any sth order Lagrangian λ : JsY →

∧m T ∗M on an FMm,n-object
Y → M induces canonically the Legendre transformation Λ(λ) : JsY →
SsTM ⊗ V ∗Y ⊗

∧m T ∗M , see e.g. Example 2.1 below. So, we have the
FMm,n-natural operator

Λ : C∞
M

(
JsY,

m∧
T ∗M

)
→ C∞

Y

(
JsY, SsTM ⊗ V ∗Y ⊗

m∧
T ∗M

)
.

It is called the Legendre operator. We inform that the concept of natural
operators can be found in [2].
The Legendre transformation Λ(λ) plays an important role in analyti-
cal mechanics, especially in the case of regular Lagrangians λ, the trans-
formation Λ(λ) can be considered as the corresponding Js−1Y -preserving
diffeomorphism between JsY and (πs−1

0 )∗(SsTM ⊗ V ∗Y ⊗
∧m T ∗M) (then

it joints the Lagrange and Hamilton formalisms in fibred manifolds), see [1].
In [5], it is proved that given positive integers m, n and s, any local

FMm,n-natural regular operator C∞
M (JsY,

∧m T ∗M) → C∞
Y (JsY, SsTM ⊗

V ∗Y ⊗
∧m T ∗M) is of the form cΛ, c ∈ R, where Λ is the Legendre operator.

In the present paper, if m ≥ 3, we describe all Legendre-like operators,
i.e. local FMm,n-natural regular operators

C : C∞
M

(
JsY,

m∧
T ∗M

)
×C∞(M,R)→C∞

Y

(
JsY,SsTM ⊗V ∗Y ⊗

m∧
T ∗M

)
(resp. C :C∞

M

(
JsY,

m∧
T ∗M

)
×C∞(Y,R)→C∞

Y

(
JsY,SsTM⊗V ∗Y ⊗

m∧
T ∗M

)
)

transforming a tuple (λ,g) of a Lagrangian λ∈ C∞
M (JsY,

∧mT ∗M) on an
FMm,n-object Y →M and a real valued map g ∈ C∞(M,R) on the base
M of Y →M (resp. g ∈ C∞(Y,R) on the total space Y of Y →M) into
a Legendre map C(λ,g)∈ C∞

Y (JsY,SsTM ⊗V ∗Y ⊗
∧mT ∗M).

The FMm,n-naturality (or invariance) of C means that for any
FMm,n-map f : Y → Y1 with the base map f :M →M1 and Lagrangians
λ∈ C∞

M (JsY,
∧mT ∗M) and λ1 ∈ C∞

M1
(JsY1,

∧mTM1) and maps g :M →R
and g1 :M1→R (resp. g :Y →R and g1 :Y1→R), if λ and λ1 are f -related
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and g and g1 are f -related, then so are C(λ,g) and C(λ1,g1). The local-
ity of C means that C(λ,g)ρ depends on germρ(λ,g) for any ρ∈ JsY and
λ∈ C∞

M (JsY,
∧mT ∗M) and any g ∈ C∞(M,R) (resp. g ∈ C∞(Y,R)). The

regularity means that C sends smoothly parametrized families of tuples
of Lagrangians and maps into smoothly parametrized families of Legendre
maps.
The present paper is a continuation of [3], where using a similar proce-
dure, we described all Euler-like operators, i.e. local FMm,n-natural regular
operators

C̃ : C∞
M

(
JsY,

m∧
T ∗M

)
×C∞(M,R)→C∞

Y

(
J2sY,V ∗Y ⊗

m∧
T ∗M

)
.

2. The Legendre-like operators on tuples of Lagrangians and func-
tions on bases.

Example 2.1. Let λ : JsY →
∧mT ∗M be an s-order Lagrangian on an

FMm,n-object Y →M . Let δλ : C∞
JsY (J

sY,V ∗JsY ⊗
∧mT ∗M) be the ver-

tical differential of λ, i.e. the composition of the restriction δ̃λ : V JsY →
V
∧mT ∗M=

∧mT ∗M×M
∧mT ∗M of the differential dλ :TJsY→T

∧mT ∗M
of λ to the vertical sub-bundles with the second (essential) factor projection∧mT ∗M ×M

∧mT ∗M→
∧mT ∗M . Let Λ(λ) :SsT ∗M ⊗V Y →

∧mT ∗M be
the restriction of δλ : V JsY →

∧mT ∗M to the vector-subbundle SsT ∗M ⊗
V Y ⊂ V JsY , the kernel of V πss−1 : V J

sY → V Js−1Y , where πss−1 : J
sY →

Js−1Y is the jet projection. The map Λ(λ) is called the Legendre transfor-
mation. So, we have the FMm,n-natural operator

Λ : C∞
M

(
JsY,

m∧
T ∗M

)
→C∞

Y

(
JsY,SsTM ⊗V ∗Y ⊗

m∧
T ∗M

)
.

The natural operator Λ is called the Legendre operator.

We have the following:

Theorem 2.2. Let m,n,s be positive integers. If m≥ 3, then any local
FMm,n-natural regular operator

C : C∞
M

(
JsY,

m∧
T ∗M

)
×C∞(M,R)→C∞

Y

(
JsY,SsTM ⊗V ∗Y ⊗

m∧
T ∗M

)
is h ·Λ for a (uniquely determined by C) map h :R→R, where h ·C is
defined by

(h ·C)(λ,g)|jsxoσ = h(g(xo)) ·C(λ,g)|jsxoσ
for any h :R→R and any C in question and any λ,g,jsxo

σ as above and
where Λ is the Legendre operator.
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So, the space of all C (as in Theorem 2.2) is the free 1-dimensional C∞(R)-
module and the operator Λ forms the basis in this module.
The proof of Theorem 2.2 will be given in Section 4.
From Theorem 2.2 it follows the following result of [5]:

Corollary 2.3. Let m,n,s be positive integers. If m≥ 3, then any local
FMm,n-natural regular operator

C : C∞
M

(
JsY,

m∧
T ∗M

)
→C∞

Y

(
JsY,SsTM ⊗V ∗Y ⊗

m∧
T ∗M

)
is aΛ for some (uniquely determined by C) real number a, where Λ is the
Legendre operator.

Proof. Let C be an operator in question. By Theorem 2.2, we can write
C=h ·Λ for some (uniquely determined by C) map h :R→R. Then C(λ)=
C(λ,1) = h(1)Λ(λ), i.e. C = h(1)Λ. □

In [5], the corollary is proved for m∈ {1,2}, too.

3. Some transformation rules. Let N be the set of non-negative in-
tegers and let Rm,n be the trivial FMm,n-object Rm×Rn →Rm and let
x1, . . . ,xm,y1, . . . ,yn be the usual coordinates on Rm,n. Given i= 1, . . . ,m
let 1i := (0, . . . ,0,1,0, . . . ,0)∈Nm, where 1 occupies ith position.
We have the induced coordinates ((xi),(yjα)) on Js(Rm,n), where i=

1, . . . ,m and j = 1, . . . ,n and α= (α1, . . .αm)∈Nm are such that |α|= α1+
· · ·+αm ≤ s. They are given by

xi(jsxo
σ) = xio and yjα(j

s
xo
σ) = (∂ασ

j)(xo)

for any jsxo
σ= jsxo

(σ1, . . . ,σn)∈ Js
xo
(Rm,n) = Js

xo
(Rm,Rn), xo ∈Rm, where

∂α is the iterated partial derivative as indicated multiplied by 1
α! .

Lemma 3.1. Let i=1, . . . ,m and j =1, . . . ,n and α= (α1, . . . ,αm)∈Nm be
such that |α| ≤ s.
(i) For any τ = (τ1, . . . , τn)∈ (R\{0})n, we have

(Jsψτ )∗y
j
α = τ jyjα ,

where ψτ = (x1, . . . ,xm, 1
τ1
y1, . . . , 1

τn y
n) is the FMm,n-map.

(ii) For any t∈R\{0}, we have
(Jsφi

t)∗y
j
α = t−αiyjα ,

where φi
t = (x1, . . . , 1tx

i, . . . ,xm,y1, . . . ,yn) is the FMm,n-map.

Proof. We prove (i), only. We have

((Jsψτ )∗y
j
α)(j

s
xo
σ) = yjα(J

sψ−1
τ (jsxo

σ)) = yjα(j
s
xo
(ψ−1

τ ◦σ))
= ∂α(τ

jσj)(xo) = τ j∂α(σ
j)(xo) = τ jyjα(j

s
xo
σ) .

The proof of (ii) is quite similar. □
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4. Proof of Theorem 2.2. We will use the notations as in the previous
sections. Additionally, let dxµ := dx1∧ ·· · ∧dxm and let xα := (x1)α1 · . . . ·
(xm)αm for any α= (α1, . . . ,αm)∈Nm.
Consider a local FMm,n-natural regular operator

C : C∞
M

(
JsY,

m∧
T ∗M

)
×C∞(M,R)→C∞

Y

(
JsY,SsTM ⊗V ∗Y ⊗

m∧
T ∗M

)
.

Assume m≥ 3. We prove several lemmas.

Lemma 4.1. Our operator C is determined by the values

(1)
〈
C(λ,g)ρ,

s⊙
d0ω⊗ v

〉
∈

m∧
T ∗
0R

m

for all λ∈ C∞
Rm(Js(Rm,n),

∧mT ∗Rm), all v ∈ T0Rn = V(0,0)R
m,n, all d0ω ∈

T ∗
0R

m, all ρ= js0(σ)∈Js
0(R

m,Rn)0=J
s
(0,0)(R

m,n) and all g :Rm→R, where⊙sd0ω=d0ω
⊙

· · ·
⊙
d0ω (s times of d0ω). (In other words, if C ′ is another

such operator giving the same as C collection of values (1), then C =C ′.)

Proof. It follows immediately from the invariance of C with respect to
FMm,n-charts. □

Lemma 4.2. Our operator C is determined by the values

(2)
〈
C(λ,g)θ,

s⊙
d0ω⊗ v

〉
∈

m∧
T ∗
0R

m

for all λ∈ C∞
Rm(Js(Rm,n),

∧mT ∗Rm), all v ∈ T0Rn = V(0,0)R
m,n, all d0ω ∈

T ∗
0R

m and all g :Rm →R, where θ := js0(0)∈ Js
0(R

m,Rn)0 = Js
(0,0)(R

m,n).

Proof. Given a map σ with ρ=js0(σ)∈Js
0(R

m,Rn)0=J
s
(0,0)(R

m,n), we have

ν :Rm,n →Rm,n defined by ν := (x,y−σ(x)), where x= (x1, . . . ,xm) and
y= (y1, . . . ,yn). This FMm,n-map ν transforms js0(σ) into θ. Then using
the previous lemma and the FMm,n-invariance of C with respect to ν, we
end the proof of the lemma. □

Lemma 4.3. Our operator C is determined by the values

(3)
〈
C(λ,xm+ c)θ,

s⊙
d0ω⊗ v

〉
∈

m∧
T ∗
0R

m

for all λ∈ C∞
Rm(Js(Rm,n),

∧mT ∗Rm), all v ∈ T0Rn = V(0,0)R
m,n, all d0ω ∈

T ∗
0R

m and all c∈R, where θ is as above.

Proof. Because of the regularity of C, we have additional assume d0g ̸= 0.
Then using the previous lemma and the invariance of C with respect to the
(0,0)-preserving FMm,n-map

(x1, . . . ,xm−1,g(x1, . . . ,xm)− g(0, . . . ,0),y1, . . . ,yn)
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(it preserves θ and transforms g into xm+c) with c= g(0), we end the proof
of the lemma. □

Lemma 4.4. Our operator C is determined by the values

(4)
〈
C(λ,xm+ c)θ,

s⊙
d0ω⊗ vo

〉
∈

m∧
T ∗
0R

m

for all λ∈C∞
Rm(Js(Rm,n),

∧mT ∗Rm), all d0ω ∈ T ∗
0R

m and all c∈R, where
θ is as above and vo := ∂

∂y1 |(0,0)
∈ T0Rn = V(0,0)R

m,n.

Proof. In the previous lemma, we can obviously additionally assume that
v ̸= 0. Then there exists an FMm,n-map Φ of the form idRm ×ϕ, where
ϕ :Rn →Rn is a linear isomorphism, sending v into vo = ∂

∂y1 |(0,0)
. Such Φ

preserves θ and xm+ c. Then using the previous lemma and the invariance
of C with respect to Φ , we complete the proof of the lemma. □

Lemma 4.5. Our operator C is determined by the values〈
C(L((xi),(yjα))dx

µ+ bdxµ,xm+ c)θ,
s⊙
d0ω⊗ vo

〉
∈

m∧
T ∗
0R

m(5)

for all L :Rm,n →R with L((xi),(0)) = 0, all b,c∈R and all d0ω ∈ T ∗
0R

m,
where θ and vo are as above.

Proof. In the previous lemma, we can write

λ=L((xi),(yjα))dx
µ+ f(x1, . . . ,xm)dxµ ,

where L and f are arbitrary real valued maps with L((xi),(0)) = 0. By the
regularity of C, we can assume f(0) ̸= 0. Then, using the previous lemma
and the invariance of C with respect to the FMm,n-map

Ψ= (F (x1, ..,xm),x2, . . . ,xm,y1, . . . ,yn)−1 ,

where ∂
∂x1F = f and F (0,x2, . . . ,xm)= 0, we may additionally assume f =1

because Ψ preserves θ and g=xm+c and vo= ∂
∂y1 |(0,0)

and it sends dxµ into

fdxµ. The proof of the lemma is complete. □

Lemma 4.6. Our operator C is determined by the values〈
C(L((xi),(yjα))dx

µ+ bdxµ,xm+ c)θ,
s⊙
d0ωo⊗ vo

〉
∈

m∧
T ∗
0R

m(6)

for all L :Rm,n→R with L((xi),(0))=0 and all b,c∈R, where θ and vo are
as above and d0ωo := d0x

m−1.

Proof. In the previous lemma, because of the regularity of C, we can as-
sume that d0(xm+c) and d0ω are linearly independent. Then by the previ-
ous lemma and the invariance of C with respect to an FMm,n-map of the
form (φ(x),y1, . . . ,yn) with linear φ (it preserves θ and vo and it sends dxµ

into det(φ) ·dxµ) we end the proof of the lemma. □
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Lemma 4.7. Our operator C is determined by the values〈
C(axβy1αdx

µ+ bdxµ,xm+ c)θ,
s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
(7)

for all α,β ∈Nm with |α|≤ s and all a,b,c∈R. Moreover given b and c, the
value (7) depends linearly on a.

Proof. Because of the locality of C, using the main result of [4], we may
additionally assume that in the previous lemma the maps L are arbitrary
polynomials in ((xi),(yjα)) of degree ≤ q with L((xi),(0)) = 0, where q is an
arbitrary positive integer.
Further, by the invariance of C with respect to (x1, . . . ,xm, 1

τ1
y1, . . . , 1

τn y
n)

being FMm,n-map for any (τ1, . . . ,τn)∈ (R\{0})n, we get the homogeneity
condition〈

C(L((xi),(τ jyjα))dx
µ+ bdxµ,xm+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
= τ1

〈
C(L((xi),(yjα))dx

µ+ bdxµ,xm+ c)θ,
s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
,

see Lemma 3.1 (i). Then by the homogeneous function theorem (see [2]),
given b and c, the value

〈
C(Ldxµ+ bdxµ,xm+ c)θ,

⊙s d0x
m−1⊗ ∂

∂y1 |(0,0)

〉
depends linearly on the coefficients of L on xβy1α and it is independent
of the other coefficients of L. Now, because of Lemma 4.6, our lemma is
clear. □

Lemma 4.8. Our operator C is determined by the values〈
C(axβy1αdx

µ+ bdxµ,exm+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
(8)

for all α,β ∈Nm with |α| ≤ s and all a,b,c,e∈R. Moreover given b and c
and e, the value (8) depends linearly on a.

Proof. In the proof of the previous lemma it suffices to replace xm by
exm. □

Lemma 4.9. We have〈
C(axβy1αdx

µ+ bdxµ,xm+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
= 0(9)

for any β,α∈Nm with both |α| ≤ s and (β1 >α1 or ... or βm−2 >αm−2 or
βm−1 >αm−1− s or βm >αm).

Proof. By the invariance of C with respect to φi
t = (x1, . . . , 1tx

i, . . . ,xm,y1,
. . . ,yn) being FMm,n-map for any t∈R\{0} and any i=1, . . . ,m and using
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the fact that given b and c and e the values (8) depend linearly on a, we get
the condition

tβi−αi+δi,m−1s

〈
C(axβy1αdx

µ+ tbdxµ, tδimxm+ c)θ,
s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
=

〈
C(axβy1αdx

µ+ bdxµ,xm+ c)θ,
s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
because φi

t preserves C and θ and
∂

∂y1 |(0,0)
and it sends xβ into tβixβ and

it sends xm into tδi,mxm (the Kronecker delta) and it sends xm−1 into
tδi,m−1xm−1 and it sends y1α into t

−αiy1α and it sends dx
µ into tdxµ, see

Lemma 3.1 (ii). Then putting t→ 0, we end the proof of the lemma. □

Lemma 4.10. Our operator C is determined by the values (7) for all a,b,c∈
R and all α,β∈Nm with (|α|≤ s and β1≤α1 and ... and βm−2≤αm−2 and
βm−1 ≤ αm−1− s and βm ≤ αm). Moreover given b and c, the value (7)
depends linearly on a.

Proof. It follows from Lemmas 4.9 and 4.7. □

Lemma 4.11. Our operator C is determined by the values〈
C(ay1(0,...,0,s,0)dx

µ+ bdxµ,xm+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
∈

m∧
T ∗
0R

m

for all a,b,c∈R. Moreover, given b and c, the above values depend linearly
on a.

Proof. It is an immediate consequence of the previous lemma. □

Lemma 4.12. Our operator C is determined by the values〈
C(y1(0,...,0,s,0)dx

µ,xm+ c)θ,
s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
∈

m∧
T ∗
0R

m

for all c∈R.

Proof. Using the invariance of C with respect to (1tx
1,x2, . . . ,xm,y1, . . . ,yn),

we get the condition〈
C(ay1(0,...,0,s,0)dx

µ+ tbdxµ,xm+ c)θ,
s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
=

〈
C(ay1(0,...,0,s,0)dx

µ+ bdxµ,xm+ c)θ,
s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
.

(Here we use m≥ 3.) Putting t→ 0, we see that〈
C(ay1(0,...,0,s,0)dx

µ+ bdxµ,xm+ c)θ,
s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
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is independent of b. Then applying the previous lemma, we complete the
proof. □

Now, we are in position to prove Theorem 2.2.

Proof. Because of Lemma 4.12, our operator C is determined by the map
C<o> :R→R defined by

C<o>(c)dxµ|0 :=

〈
C(y1(0,...,s,0)dx

µ,xm+ c)θ,
s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
, c∈R .

On the other hand, given a map ho :R→R, we have (ho ·Λ)<o> = ho.
The proof of Theorem 2.2 is complete. □

5. The Legendre-like operators on tuples of Lagrangians and func-
tions on total spaces. We will use the notations as in the previous sec-
tions. We are going to prove the following:

Theorem 5.1. Let m,n,s be positive integers. If m≥ 3, then any local
FMm,n-natural regular operator

C : C∞
M

(
JsY,

m∧
T ∗M

)
×C∞(Y,R)→C∞

Y

(
JsY,SsTM ⊗V ∗Y ⊗

m∧
T ∗M

)
is ho ·Λ for some (uniquely determined by C) map ho :R→R, where h ·C
is defined by

(h ·C)(λ,g)|jsxoσ = h(g(σ(xo))) ·C(λ,g)|jsxoσ
for any h :R→R and any C in question and any λ,g,jsxo

σ as above and
where Λ is the Legendre operator.

So, if m,n,s are positive integers with m≥ 3, then the space of all C (as
in Theorem 5.1) is the free 1-dimensional C∞(R)-module and the operator
Λ form the basis in this module.

Schema of the proof of Theorem 5.1. Similarly as in Lemma 4.1, C is
determined by the collection of values〈

C(λ,g)ρ,
s⊙
d0ω⊗ v

〉
∈

m∧
T ∗
0R

m

for all λ∈ C∞
Rm(Js(Rm,n),

∧mT ∗Rm) and all v ∈ T0Rn = V(0,0)R
m,n and

all d0ω ∈ T ∗
0R

m and all ρ= js0(σ)∈ Js
0(R

m,Rn)0 = Js
(0,0)(R

m,n) and all
g :Rm,n →R.
Because of the regularity of C, we can assume that d(0,0)g(v) ̸= 0. Then
using the invariance of C with respect to a (0,0)-preserving FMm,n-maps,
we may additionally assume g= y1+ c and v= ∂

∂y1 |(0,0)
, where c is an arbi-

trary real number.
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Then using the invariance of C with respect to (x,y−σ(x)), we may
additionally assume ρ= θ := js0(0) and g= y1+σ1(x)+ c. (We must replace
the old additional assumption g= y1+c by the new one g= y1+σ1(x)+c.)
Further, because of the regularity of C, we can assume that ∂

∂xmσ1(0) ̸=0.
Then using the invariance of C with respect to some (φ(x),y), we may
additionally assume g= y1+xm+ c.
Next, we can write λ=L((xi),(yjα))dxµ+f(x1, . . . ,xm)dxµ, where L and

f are arbitrary real valued maps with L((xi),(0)) = 0. Then quite similarly
as in Lemma 4.5, we can write λ=L((xi),(yjα))dxµ+ bdxµ, where L is an
arbitrary real valued map with L((xi),(0)) = 0 and b∈R.
Next, quite similarly as in Lemma 4.6, we may additionally assume that

d0ω= d0x
m−1.

Next, using the main result of [4], we may additionally assume that L is
an arbitrary polynomial in ((xi),(yjα)) of degree ≤ q, where q is an arbitrary
positive integer. Then quite similarly as in the proof of Lemma 4.7, we see
that C is determined by the collection of values〈

C(bdxµ,xm+ y1+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
and 〈

C(axβy1αdx
µ+ bdxµ,xm+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
for all α,β ∈Nm with |β| ≤ q and |α| ≤ s and all a,b,c∈R.
Then similarly as in Lemma 4.12, C is determined by the collection of
values〈

C(bdxµ,xm+ y1+ c)θ,
s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
and 〈

C(y1(0,...,0,s,0)dx
µ,xm+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
∈

m∧
T ∗
0R

m

for all b,c∈R.
Next, using the invariance of C with respect to

(x1,x2, . . . ,xm−2,
1

τ
xm−1,xm,y1, . . . ,yn) ,

we get

τ s−1

〈
C(bτdxµ,xm+ y1+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
=

〈
C(bdxµ,xm+ y1+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
.
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Then in the case of s≥ 2 we get〈
C(bdxµ,xm+ y1+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
= 0

and in the case of s= 1 we get〈
C(bdxµ,xm+ y1+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
=

〈
C(0dxµ,xm+ y1+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
.

Moreover, by the invariance of C with respect to ( 1τ x
1,x2, . . . ,xm,y1,

. . . ,yn), we get〈
C(0dxµ,xm+ y1+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
= τ

〈
C(0dxµ,xm+ y1+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
.

Then (in both cases), we have〈
C(bdxµ,xm+ y1+ c)θ,

s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
= 0 .

Consequently, C is determined by the map C<o> :R→R defined by

C<o>(c)dxµ|0 :=

〈
C(y1(0,...,0,s,0)dx

µ,xm+ c)θ,
s⊙
d0x

m−1⊗ ∂

∂y1 |(0,0)

〉
,

where c∈R.
Conversely, given a map ho :R→R, we have (ho ·Λ)<o> =ho. The proof
of Theorem 5.1 is complete. □
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