doi: 10.17951/a.2025.79.1.85-103

ANNALES
UNIVERSITATIS MARIAE CURIE-SKEODOWSKA
LUBLIN-POLONIA

VOL. LXXIX, NO. 1, 2025 SECTIO A 85-103

FURKAN SECGIN

On Leonardo, Leonardo—Lucas
and modified Leonardo elliptic quaternions
and their matrix representations

ABSTRACT. In this paper, we present a new class of elliptic quaternions that
incorporate Leonardo, Leonardo—Lucas and modified Leonardo numbers into
their components. We explore some fundamental properties associated with
these numbers. In particular, we obtain recurrence relations, generating func-
tion, Binet formula of these sequences and by using Binet formula we derive
Vajda, Cassini, Catalan and d’Ocagne identities. Lastly, we investigate two
different matrix representations of these numbers.

1. Introduction. Recently, Catarino and Borges [3] explored the recur-
rence relations and various properties of Leonardo numbers. Following
their work, Alp and Koger [1] investigated additional interesting properties
of these numbers. Kuhapatanakul and Juthamas [8] extended the study
to generalized Leonardo numbers, examining their matrix representation.
Additionally, Karatas [7] defined complex Leonardo numbers and analyzed
their combinatorial properties. Isbilir et al. [6] investigated Pauli-Leonardo
quaternions.

Further developments on Leonardo numbers, their generalizations, and
interesting properties can be found in [2, 9, 12, 11, 14, 16, 17].
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Ozdemir [10] explained how, for a given ellipsoid, one can define a suitable
scalar product and vector product. He introduced elliptical inner product,
elliptical vector product and he aimed to describe the motion on an ellipsoid
#?fa2 + v° 12 + #° /2 = 1 as a rotation using the proper inner product, vector
and elliptical orthogonal matrices introduced in that elliptical scalar prod-
uct space. He also defined the elliptic quaternions and showed a relation
between elliptical rotation and elliptic quaternions.

Let {eo, e1,e2,e3} be four basic elements satisfying the equalities ey = 1,

e?=—aq, €3 =—f, e =—v and

A A A
(1.1) €1€9 = ;63 = —€2€1, €2€3 = Eel = —€3€2, €3€1 = — €2 = —€1€3

B

where o, 3,7 € RT and A = \/a3v. The set of elliptic quaternions is defined
by the formula

(1.2) Hap~ = {Q = qoeo + qre1 + q2e2 + qze3 : qo, q1, 92,93 € R} .

This set is an associative, noncommutative division algebra with the basic
elements {eg, €1, €2, e3} and it is a 4-dimensional algebra over real numbers.
If «, B and v are equal to 1, we have the real quaternion algebra. Thus, el-
liptic quaternions are an extension of real quaternions with the elliptic inner
and vector product. Furthermore, the following table shows the products
of dual elliptic quaternion units.

€o el e e3
eo eo el €2 e3

er || e —a (Af) es (=5/8)e2
e || ea | (“8h)es —f (8/a) €1
es || es | (Bpex | (8fa)er —

TABLE 1. The products of elliptic quaternionic units.

Additionally, as in the case of quaternions, it is possible to define right and
left multiplications of two elliptic quaterions using 4 x 4 real matrices. For an
elliptic quaternion Q) = qo + q1e1 + g2e2 + q3es3, consider the transformations

¢ Hapy — Hapy p:He gy — Hapy

P—s o) =qp P — u(P) = PQ.
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The following 4 x 4 matrices corresponding to these transformations, respec-
tively, provide the left and right product matrices of Q:

qgo —aq _QQQ —AV% qgo —aqi —Aﬁ(b _qu
a q0 —593 492 a1 4o 2B T4
Lo = A A, | %o = _A A
42 7493 90 g4 42 —3F43 4o g4
A A A _A
43 —5492 541 q0 43 5492 S 41 4o

For detailed information about these concepts, we refer to reader to [4,
10, 13].

2. Basic concepts and notions. This section contains some definitions
and theorems that will be used in the following sections of the paper.
For n > 2, the sequence of Fibonacci numbers {F,} is defined by

(2.1) Fo=F, 1+F,o Fo=0 F =1
and the sequence of Lucas numbers {L,} is defined by
(22) L,=L,1+L, 9, Lyg=2 L=1

Let 7 and ¢ be the roots of the characteristic equation t> —t —1 = 0
corresponding to formulas (2.1)—(2.2). Solving the characteristic equation,

we obtain the distinct roots ¢ = 1‘*'2—‘/5 and ¢ = 1_2—‘/5 Then the Binet
formulas for Fibonacci (F,,) and Lucas (L, ) numbers are:

n __ 4n
Note that we have the following equations:
(23) 2Fn+1 — Fn + Lna Ln — anl + Fn+17 Ln = Fn+2 - Fn72-

Similar to the Fibonacci and Lucas numbers, the Leonardo numbers,
which were first introduced by Dijkstra [5] in 1981 in a sorting algorithm,
satisfy the recurrence relation

(24) En = En—l + En—2 + 17 n > 2

with the initial conditions £y = £ = 1. This sequence can be seen in OEIS
[A001595]. Furthermore, there are two number sequences called Leonardo—
Lucas and modified Leonardo introduced by Soykan in [14]. For n > 2, they
are defined as

(2.5) Lyw=Lrn1+Lopn2—-1, Lro=3, L1 =2
and

(2.6) Mp=Mp_1 +Mp_2+1, My=0, M =1,
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respectively. These sequences can be seen in OEIS [A001612] and [A000071],
respectively. The sequences {L,}, {L1,,} and {M,,} satisfy the third order
linear recurrences as follows:

En = 2£n—1 - ﬁn—?n EL,n = 2EL,n—l - £L,n—37
Mn = 2Mn—1 - Mn—?"

Let 9, ¢ and w be roots of the characteristic equation t3 — 2t> +1 =
(t? =t —1) (t — 1) = 0 corresponding to equations (2.4)—(2.6). By solving
the equation, we get three distinct roots as follows:

1+v5 15
2 0= 2

(2.7)

and w=1.

(2.8) $=
Note that
V+o+w=2 or p+é=119v—-¢=5
(2.9) Yo+ Yw + pw =0
Yow =—1 or Yo =—1

and moreover 12 +1 = /51, o> + 1 = —/5¢, 2 + ¢?> = 34% — ¢ = /5
and 93 + ¢> = 4. On the other hand,

B 2 (wn—l-l _ (bn—l—l)

2.10 Lo = —1,
(211) Lin ="+ 6" +1,

wn—i—? _¢n+2
2.12 oy Tme T
(2.12) Mo= "0

are the Binet formulas of Leonardo, Leonardo—Lucas and modified Leonardo
numbers, respectively. From the Binet formulas of Fibonacci and Lucas
numbers, we get

(2.13) L,=2F,1-1, Ly,=L,+1, M, =F, -1

In addition, we have the following interrelations:

5L, = 2L,41 +4L, =5, Lpn,=2F,41 —F, +1,

5M,, =3L,41 + Ly — 5.

Furthermore, there are the following relations among Leonardo, Leonardo-
Lucas and modified Leonardo numbers:

2Ly =Lp—2+ Ly +2,
(2.15) 2Mp = Lpy1 — 1,
My =Lyp+ L1, p—1 —Fp — 3.

In [1], the (—n)th Leonardo number with negative subscript is defined as
follows:

(2.16) Lop=(-1)""(Lpo+1)—1, forn>2

(2.14)
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Additionally, the following recurrence relation for negative subscripted
Leonardo numbers is presented in [17]:

(2.17) L =L pni1+L pio—1, forn>0

and some values of negative subscripted Leonardo numbers are £_1 = —1,
;Cfg = 1, £73 = —3, £74 =3 and £75 =-T.

Moreover, the matrix representation of Leonardo numbers was presented
in [1] with the following 3 x 3 matrix:

2 10
(2.18) 001
~100

and some properties of these numbers were studied with respect to the
matrix.

Now we can introduce the Fibonacci and Lucas elliptic quaternions.
These were investigated by Tan et al. in [15] as follows.

The nth Fibonacci and Lucas elliptic quaternions are defined respectively
by
QF, =F, + Fniier + Frioeo + Fryses,
QL, =L, + Lyyie1 + Lpgoes + Ly g 3es,

where F,, and L,, are the nth Fibonacci and Lucas numbers, respectively.
Here e1, e2 and es are the basis and satisfy the relation in (1.1).

Furthermore, the Fibonacci and Lucas elliptic quaternions satisfy the
following recurrence relations:

QFn = QFn—l + QFn—Qa n > 27
QL, = QL1 +QL, 2, n> 2,

respectively, with the initial conditions QFg = e; +eo+2e3, QF1 = 1+e¢e1 +
2e9 + 3e3 and QLg = 2 4 e1 + 3eg + 4eg, QL1 = 1 + 3e1 + 4eg + Tes.

(2.19)

(2.20)

3. Leonardo, Leonardo—Lucas and modified Leonardo elliptic
quaternions. In this section, we construct Leonardo, Leonardo—Lucas and
modified Leonardo elliptic quaternions and establish some properties of
these number sequences. Moreover, we give matrix representations of them.

Definition 3.1. For n > 1, the nth Leonardo, Leonardo—Lucas and modi-
fied Leonardo elliptic quaternions (briefly, LEQ, LLEQ, MLEQ) are defined
by
QL, =Ly + Lyyie1 + Lpjoez + Lyy3es,
(3.1) QL1 n = Li,n+ Liny1€1 + L1, n2e2 + L1, nt3€3,
OM, =M, + Mn+1€1 + Mn+262 + Mn+3€3u

respectively, where eg, e and e3 are elliptic quaternionic units and £,,, L1, 5,
and M, are the nth Leonardo, Leonardo—Lucas and modified Leonardo
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numbers, respectively. The set of all LEQ, LLEQ and MLEQ are denoted
by LH, LHy, and MH, respectively.
The sequences {QL,}, {QLy, ,,} and {QM,,} satisfy the following third-

order linear recurrence relations, respectively:

(3.2) QL, =2QL, 1 — QLy 3,
(3.3) QL =2QLyn—1 — QLL -3,
(3.4) OM;, =20M; 1 — QM 3.

Theorem 3.2. Forn > 2, LEQ, LLEQ and MLEQ satisfy the recurrence
relations

(3.5) QL, = QLy 1+ QLyu 2+ QF,
(3.6) QL = QL p-1+ QL p—2—QF,
(3.7) OM,, = QM1 + QM 2+ Q"
with the initial conditions
QLo =14 e + 3ex + bes, QL1 =1+ 3ey + 5es + 9es,
QL1 o = 3+ 2e1 + 4ea + Ses, QL1 1 = 2+ 4eq + Sez + 8es,
OMy = e1 + 2e5 + 4eg, OM1 =1+ 2eq + 4eo + Teg,

where Q* =1+ e1 + eg + e3.

Proof. It can be easily proved by using the equations (2.4)—(2.6) and (3.1).
O

Theorem 3.3. The generating functions for LEQ, LLEQ and MLEQ are
_ QLo+ (QL1 —2QLo) t + (QLy — 2QL1) 12

(3.8) GFQEn (t)

3 —2t+1
CFop, (t) — 2Er0+ (QLu1 =20L10)t+ (QLro = 20L11) ¢

Qhrn B 38— 2t +1 ’

M A 3 -2t +1 '
Proof. Let GFgr, (t) be the generating function for LEQ such that
(3.9) GFor, (t) = QLo+ QLit + QLot* + -+ + QLyt" + - -+ .
Multiplying both sides of (3.9) by —2t and ¢, we have

—2tGFgr, (t) = —2QLot — 20L11* — 2QLot> — -+ — 20L,t" T + -

t°GFqr, (t) = QLot® + QLit* + QLot" + -+ + QL " 4 -

We have anticipated result (3.8) by using the initial conditions of LEQ and
making the necessary operations. Other equations can be proved in the
same way. ]
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Corollary 3.4. Considering (2.13) and (2.20), we obtain

OL,=Ln~+Lpr161+ Lugoes+ Lyyses
(3.10)  =2F,41 -1+ (2Fpp2—1)er+ (2Fnq3—1)ea + (2F1a— 1) €3
= 2QFTL+1 - Q*u

QLy,y = Li,pn + L1 pt1e1 + L1, nt2e2 + L1, ny3€3
(3.11) =Lp+1+ (Lpy1+1)er + (Lpyo+1) ez + (Lpss + 1) es

and

OM,, = M, + MnJrlel + Mn+262 + Mn+3€3
(3.12) =Fnpo— 1+ Fnps—1er+ Fppa—1)ea+ (Fpps —1)es
= QFnJrQ - Q*

If we consider (2.3) and (3.10)—(3.12), we have

QL =2Fn11 -1+ (2Fq2 —1)er + (2Fuq3 — 1) e2 + (2Fpq4 — 1) e3
=F,+ Ly + (Fry1 + Log1) er + (Fage + Lnyo) e2
+ (Frts + Lnys) es — Q7
= QF, + QL, — Q~,

QLun =Ly +1+4+ Loy +1)er + (L2 +1) e+ (Lpys + 1) e3
=F, 1+ Fpp +(Fn+Fppo)er + (Frpr + Foga)eo
+ (Fry2 +Foga) ez +Q°
=QF,_1+ QF 41 + Q"

and

QMn = Ln + Fn_Q -1+ (Ln+1 + Fn—1 — 1) e1 + (Ln+2 + Fn — 1) €9
+ (Lpys+Fppr —1)es
- QLn + QFn—Z - Q*

where OF,, and QL,, are the nth Fibonacci and Lucas elliptic quaternions,
respectively.
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Corollary 3.5. Considering (2.14) and (2.20), we obtain
5QL, =5 (['n + »Cn—i-lel + £n+262 + En+3€3)
= 9Lp41 + 4Ly — 5+ (2Loso + 4Lnst — 5) €1
+ (2Ln+3 + 4Ln+2 - 5) e2 + (2Ln+4 + 4Ln+3 - 5) €3
=20QL,4+1 +4QL, — 5Q",

QL, = L1, n+ Linyi1€1 + L1, nt2e2 + L1, nt3€3
— 9F,1 — Fp+ 1+ (2Fnis — Frar + 1) e
+ (243 — Foio+ 1) ea+ (2Fsq — Foys + 1) e3
=20F,11 — QF, + Q"
and
5AM,, =5(Lyn+ Lint1€1 + L1 nt2e2 + L1, n43€3)
= 5Lps1+ Ly — 5+ (3Lnja + Lut1 — 5)ex
+ (3Lnts + Lnta — 5) e2 + (BLn+a + Lnts — 5) e3

=3QL, 41 + 9L, — 5Q%,

where OF,, and QL,, are the nth Fibonacci and Lucas elliptic quaternions,
respectively.

Corollary 3.6. By using the equation (2.16), we can also define the negative
subscripted LEQ as follows:

(3.13) QL =L ,+L pi1e1+ L _pioes+ L _pyzes, forn>0.
Theorem 3.7. Let QL_,, be the (—n)th LEQ, then

QL = (-1)"[(Ln-2+1) + (Ln-s +1) €]

+(-1)" M [(Lnos+1)er + (Lnos + 1) es] — Q%,  forn > 2,

QL , =—QL 1+ QL 12— Q, forn>0.
Proof. It can be easily proved by using the equations (2.16) and (2.17). O
Theorem 3.8. The Binet’s formulas of LEQ, LLEQ and MLEQ are
B 21#”“1&* _ 2¢n+1¢*

. 4 £n - *a
(3.14) Q — Q
(3.15) QL = Y"" + ¢" " + Q7

PR — "2t
(310 ° TEFEE

where ¥* = 1+ e; + 2es + Y3e3 and ¢* = 1 + per + d2es + Pdes.



On Leonardo, Leonardo-Lucas and modified Leonardo elliptic quaternions... 93

Proof. By (2.10)—(2.12) and (3.1), we obtain
QL, =Ly + Lpj1e1 + Lpg2ez + Lyy3€3

n+1 _ n+1 n+1 _ n+1
2 (ym+ ¢+)_1+<2(w+ ¢+)_1>€

T -9 -0
92 n+2 _ n+2 2 n+3 _ n+3
+< s )_1>e2+< kb )_1>63
n+1 n+1
= 20 (14 e + PPe + Pes) — ff_ 5 (L 1+ ¢Pea + gPes)

Y —¢
L( +e1+e2+eg)+w¢i¢

¢
n-4 n—+1 1%
2¢ 1#1/} ¢¢ ot 0
By (2.11) and (3.1), we get
QL n = Lin+ Liny1e1 + Lo pt2e2 + L1, ni363
="+ "+ 1+ (" + " 1) e+ (PP " 4 1) e
+ ("3 4 "3 1) e
= 9" (L+vper + ¢2ea + PPes) + ¢" (L + der + dPer + does)
=Yt +¢"" + Q.
By (2.12) and (3.1), we obtain
OM,, = M, + Myi1e1 + Mpioes + My, ises

n+2 __ n+2 n+3 _ n+3
L (),

(1+e1+e2+e3)

+Q

Y—¢ Y—¢
nt+d _ pn+d n+5 _ 4n+5
(e ) e (e
77bn—',—Q ; 5 ¢n+2 ) 5
T Y—4 (14 verp’esip’es) — " (1+ perg?erd’es) — Q*
wn+2w* _ ¢n+2¢* i
= — 0. 0
e “
Remark 3.9. By the definitions of ¥*, ¢* and Q*, we get the following

relationships:

Yo =1+a—B+y+ <1—\/5§> e1+ <3—\/5?> €2+ <4—\/5§> €3,
P Y =1+a—B+y+ <1+x/5§> €1+ (3+\/5?> es + (4—\/5§> €3,
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PQF=—1—1 (oz—i—wﬁ—i—wzfy) - %wel +\/5§¢2€2 - ?eg +Uv*+Q7,
5@ =-1=0(a+ 65+ 60) - Loa + VB G- Satd Q)
QY =Q" +¢" — (1+va+y?f+v’y) +w%el FW+2) e ﬁeg

5
@6 =@ 40~ (14 00+ +6%) +05a - Gt Se

Theorem 3.10. The exponential generating functions for LEQ, LLEQ and
MLEQ are

S n * )y * 0
ZQﬁniﬁ?(W ez_j:qb e y) gt
n=0 ’

oo n
S0 = e e 4 e,
=0 °

& n ¢n+1¢*67¢)y _ ¢n+1¢*e¢y
ML =
2, M Sy

— Q*eV.

Proof. By formula (3.14), we get

y wn+1¢* ¢n+1¢*> B *:| g
ZQ‘C | Z[( b0 N

n!
n=0

oo

2¢¢* 2¢¢ o (0)"
Z Z nv - Q@ Z

(W*eiz zas*e@) _ g

Other equations can be proved in the same way. [l

Theorem 3.11. The Vajda’s identity for the LEQ s

Q»Cn—i-r Q»Cn—i-s - Q['nQ[fn—&-r—i-s

= 2B o (1 (g - 00 )

— (YT = 9" Q"+ QT (YT — 9" Tg)).
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Proof. Let VL be the Vajda’s identity for LEQ. By the Binet formula for
LEQ and the Binet formula for Fibonacci numbers, we get

VL = Q£n+r QEnJrs - Qﬁn Q£n+r+s
n+r+lx _ on+r+1 ok n+s+1,% _ ants+1 1
_ (2@0 Yt —¢ ¢ —Q*) <2¢ Yt —¢ ¢ —Q*>

Yv—9 Y —¢
B wnJrlw* o ¢n+1¢* B *> < wn+r+s+1w* _ ¢n+r+s+1¢* B *>
(2 o) b= N
— 4 (¢2n+7‘+s+2 (7;[)*)2 _ ¢n+r+1¢n+s+l¢*¢*

(W — o)’
_wn+s+1¢n+r+1¢*¢* + ¢2n+r+s+2 (¢*)2)

2 (wn+r+1w* _ ¢n+r+1¢* + wnJrlw* _ ¢n+1¢*) Q*

Y —¢
+ j?*(b (wn+r+s+1¢* . ¢n+r+s+1¢* N wn-i-s—i—lw* + ¢n+5+1¢*)
_ (w _4¢)2 ((wn+1¢n+r+s+1 . wn+r+1¢n+s+1) 1/1*¢>*

+ (¢n+r+s+1¢n+1 _ ¢n+s+1¢n+r+1) ¢*¢*)

L2 ) — ¢ (1 ) ) Q@

V=0
@ = D - g (9 1))
= (M - ) (T~ ) )
i [OYE Y E * * n+s ik n+s, x
+ Z WO =676 Q7+ Qg (67797 — oY)

2\/g 8 1k /% S,k L*
i C1 S VR S CC
o (wnw* o ¢n¢*) Q* 4 Q* (wn—l—sw* o ¢n+s¢*))
In the following corollaries we have particular cases of Vajda’s identity.
Corollary 3.12. For r = —s, we reduce it to Catalan’s identity for LEQ

as follows:

Qﬁnfs QﬁnJrs - Qﬁ% = 2\5/5 (2 (_1)n+1 Fr (¢S¢*w* - ¢8¢*¢*)
— (Y"* = ¢"0") QT+ QF (YT — 97 T9T)).
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Corollary 3.13. For s = —r = 1, we reduce it to Cassini identity for LEQ)
as follows:

2\f

QL 1QLns1 — QL2 = == (2(=1)"! (o™ — g™ ¢")

— ("= ") Q"+ QF (W YT — 9" eY)).

Corollary 3.14. For s — m —n, m > n and r = 1, we reduce it to
d’Ocagne’s identity for LEQ as follows:

QL 19QLm — QL OL i1 = 2‘[( 2 (Y Y — ¢ TP 9")

— ("= ¢"9") Q"+ QT (YY" - ¢ ¢")).

Theorem 3.15. The Vajda’s identity for the LLEQ is

Q‘CL,nJrr Q»CL,nJrs - Q'CL,TLQ‘CL,TL+T+S

+ 0" (6" = 1) (¢°Q" = 6°Q7¢") .
Proof. Let VL1, be the Vajda’s identity for LLEQ. By the Binet formula
for LLEQ and the Binet formula for Fibonacci numbers, we get

VL = QLL nrQLLnts — QLLRQLL ntr+s
— (¢n+r¢* +¢n+r¢* +Q*) (wnJrsw* +¢n+s¢* -I-Q*)
— (" 4 ¢ P + QF) (W"TTIYT + " + Q)
= (YT — g TTES) gt 4 (Tt — TG gt
+ (¢n+r . ¢n) VQF + (wn—&-s . wn—&—r—l—s) Q*y*
+ (¢n+r _ ¢n) ¢*Q* + (¢n+s B ¢n+r+s) Q*¢*
= PP (VT — ") TP+ TG (¢ — ) T + " (P — 1) 9 Q*
F YT (L= ") QYT + ¢ (¢ — 1) ¢*QF + ¢" T (1 — ¢7) Q¢
= V5 (=1)" ¢°F,p*¢* — V5 (—1)" °F g™ + 4" (" — 1) v*Q*
H YT (1= ") QYT + ¢ (¢ — 1) ¢ QF + ¢ (1 — ¢7) Q¢
= V5 (=1)" ¢°F, (¢°0" 0" — ¥ ¢™") + 9" (¥ — 1) (V* Q" — ¥ Q*¥")
+¢" (¢ — 1) (¢*Q* P*Q ")

O
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In the following corollaries we have particular cases of Vajda’s identity.

Corollary 3.16. For r = —s, we reduce it to Catalan’s identity for LLEQ)
as follows:

QEL,nfs Q['L,n+s - Q[f%,n
= V5 (=1)" ¢ ($°Y* " — P ™ Y*) + 4" (v — 1) (V' Q" — ¢°Q ")
+ ¢n (¢—s o 1) (¢*Q* o ¢SQ*¢*) .

Corollary 3.17. For s = —r = 1, we reduce it to Cassini identity for LLEQ)
as follows:

QL1 n-19L1nt1 — Qﬁin
= VB (1) 6 (69° 6" — v7y") - (3_2“5) Y QT — 9@ )

4 (“ f) (6°Q" — Q")

Corollary 3.18. For s — m —n, m > n and r = 1, we reduce it to
d’Ocagne’s identity for LLEQ as follows:

QL1 n+19L1m — QLL QL1 m+1
— " (47 Q" — ¢ TR T) .

Theorem 3.19. The Vajda’s identitiy for the MLEQ is

QMTZ+T QMn+s - QMnQMn—H"-l—s
S 1k 1k 8 |k |k in+2_r * )k 8 )k )k
= (-1)"F, (¥°¢"¢ ¢w¢>+¢5w (1—9") (' Q" —¢°Q™Y")
1 n+2 T XYk IS )k K
\/gqﬁ (1=¢")(0"Q" — ¢°Q7¢").
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Proof. Let VM be the Vajda’s identity for MLEQ. By the Binet formula
for MLEQ and the Binet formula for Fibonacci numbers, we get

VM = QM r QM5 — QM QM s
:<W””W:Wmﬁﬁ_Qﬁ(W“”W:W““W_QO
- <¢n+21ﬁ _ in+2¢* - Q*) <,¢n+r+s+21;f _ zn+r+s+2¢* - Q*>
T o
L (g g g
(TSR _ et 2gnere2) )

(1,[)”+2 (1 _ wr) 17[)* + ¢n+2 (¢r _ 1) ¢*) Q*

1
T

wcg_*d) (¢n+s+2 (wr _ l)w* + ¢n+5+2 (1 _ ¢r) (b*)

= ( w ¢ 2wn+2¢n+2 (w ¢ w ¢S¢*¢*)

- )
wr (,¢n+2w Q ¢n+8+2Q 17[) )

Ll
Y—9
1 ¢T n+2 n+2 %k
o ¢(¢ Q9" — """ Q")
=(=D)"F

_%¢n+2 (1_¢r) (¢*Q*_¢SQ*¢*) O

o ¢www+;§wﬂu—¢wwmr—Wwa

In the following corollaries we have particular cases of Vajda’s identity.

Corollary 3.20. For r = —s, we reduce it to Catalan’s identity for MLEQ)
as follows:

OMy—s QM5 — QM2 = (—1)" T3 F (Yo p™ ™ — 6°0*¢")

+;EW”%1—¢*MWQ*—WQWﬂ
—N%W”%l—ésﬂfQ*—ﬁQWﬂ.
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Corollary 3.21. For s = —r = 1, we reduce it to Cassini identity for
MLEQ as follows:

QMn—l QMn+1 - QM?L = (_1)71, (¢¢*¢* - ¢T/J*¢*)

Ln+2 1 * )k * ok
YT T QT - ey

b
V5

Corollary 3.22. For s — m —n, m > n and r = 1, we it reduce to
d’Ocagne’s identity for MLEQ as follows:

¢n+2 (1 o (bfl) (¢*Q* _ ¢Q*¢*) )

OMy1 QM — QM QMg = (1) (Y™ "™ — ¢ "ap* ¢*)

+ \}gwn+2¢ (WQ* o wm—nQ*w*)
. \}g¢n+2w (¢*Q* _ ¢m—nQ*¢*) )

Corollary 3.23. Considering (2.13) and (2.14), we obtain

20M,, =2 (M + Myqier + My aez + My yzes)
=2Lp1 — 1+ (2En+2 — 1) e + (2£n+3 — 1) €2 + (2£n+4 - 1) es
= 2Q‘Cn+1 - Q*a

QQ,CL’H =2 (»CL,n + »CL,n+1€1 + »CL,n+2€2 + £L,n+3€3)
=Lrno2+tLon+2+ (Lopn1+Lonr+2)er
+ (Lon+ Lrnt2 +2)e2 + (LLpt1 + LLnss +2) €3
=20L, 2+ QL, +2Q"

and

OM,, = M, + Myi1e1 + Mpioes + My ises
=Lin+Lrn1—Fun—=3+Lrpy1+Lon —Fnp1—3)er
+ (Lrp+2 + Lrpt1 — Fuyo —3) ez
+ (Lrns3 + Lonre —Fnyz —3)es
=QLyn+ QL p1 — QF, —3Q",

where QF,, is the nth Fibonacci elliptic quaternion.
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4. The matrix representations of LEQ, LLEQ and MLEQ. In addi-
tion to previous formulations, we can define the matrix equalities for LEQ),
LLEQ, and MLEQ using the following expressions.

Theorem 4.1. Let QL,, QLy, and QM, be the nth LEQ, LLEQ and
MLEQ, respectively. For every n > 0, the following matriz equalities hold:

QL3 QLy QL |
QLy QL1 QLg
QLy QLy QL1 |
QL3 QLLy QOLLa |
QLr2 QL1 QLrp
QL QLLo QL1 |
OM3 OMy OM; |
OMy OM; QM

OM; QMo QM4 |

and

QL2
QL1
oL,

QL 1
QELJ’L

OMp 41
oM,

QL n+y2

! OM 42 |

[ 2 10]

0 01

| —100]
[ 2 10

0 01

| —100]
2 10

0 01

100

N OFFN O DN
OO R OO = OO

aqn

n

mn

)
—_

|

QLyy3
QL2
QL1

QL 143
QL ny2
Q£L7n+1

QMn+3

QMn+2
OMp 41

[ QL
QL
| QLo

T oLy
QL1 1
| QLLo

_QM2]

QL2
QL1
oL,

QﬁL,n—&-Q
QﬁL,n—&-l
QﬁL,n

QMn+2
OMp 41
OM,,

)

|

QM
| QM

QL1
oL,
Q»cnf 1

)

QL nt1
QEL,n
QEL,n—l
OM 41

oM,
QMn—l

|

Proof. The proof is obvious by mathematical induction on n. The equality
hold for n = 1. Now suppose that the equality is true for n > 1. Then we
can verify it for n 4+ 1 as follows

QL3 QLy
QLy QL

QL) QLy QL4
[ QL; QL

QLy QL
| QL QLy QL

QL
QLo

oLy
QL

L

:

1
0
0
2
0

i Q£n+3
QLo
| QL1

i Q£n+4
Q£n+3
| QL2

QL2 OLpt1 |
Q£n+1 Q£
QL, QLp 1 |

Q[fn—&—?) Q£n+2
Q£n+2 Q»Cn-l-l
Q£n+1 Qﬁn

0
1
0

1
0
10
1
0
&
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Corollary 4.2. Consider QL,,, QL,, € LH. We have the following:

wor, : LH — LH
QL — wor, (QLn) = QL ALy,

and

wor, : LH — LH

where por, and por, are respectively given as

[ Ly —alpt1 —BLpya —VLnys ]

R . £n+1 En _%£n+3 %£n+2
QLn = £n+2 %Ln—i-?) Ln - %Ln—i—l ’
L £n+3 _%£n+2 %En-l—l En

[ ﬁn _aﬁn—H _5£n+2 _7£n+3 T

R . £n+1 ﬁn %£n+3 - %£n+2
QLn = £n+2 _%£n+3 Ly, %ﬁnJrl
L ['n+3 %LnJrQ _%EnJrl *Cn

Other representations for the numbers in LHy, and MH can be shown in the
same way.

5. Conclusions. Elliptic quaternions defined in [10] has been given for a
special case by replacing real number coefficients by Leonardo, Leonardo—
Lucas and modified Leonardo number coefficients. We first defined elemen-
tary operations and its 4 x 4 matrix representations on the set of elliptic
quaternions. Then we gave the definitions and relationships of Leonardo,
Leonardo—Lucas and modified Leonardo numbers. We then went on to in-
vestigate relationships, recurrence relation and Binet formula of Leonardo,
Leonardo—Lucas and modified Leonardo elliptic quaternions. We also pro-
vided the generating function. We finally investigated Vajda’s identity
and gave some corollaries for special cases such as Catalan, Cassini and
D’Ocagne’s identities. Lastly, we studied two different matrix representa-
tions of these numbers.

In the following table (Table 2), we show the numbers which are men-
tioned in this paper.
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Number

Definition

Elliptic Quaternions (Ha,g,,) [10]

Q = qoeo + qre1 + gze2 + gses :
q,q1,92,93 €R

nth Fibonacci Numbers

Fon=Fn1+Fn 2 Fo=0,F, =1

nth Lucas Numbers

Lpn=Ln1+Lp2, Lo=2 L =1

nth Leonardo Numbers

En:‘cnfl +Ln72+17
TLZQ, [,0251:1

nth Leonardo-Lucas Numbers

£L,'n - EL,n—l + EL,n—2 + 17

n>2, Lro=3, L1 =2

nth modified Leonardo Numbers

My =Mp_a +Mn—2+1,
n>2 Mo=0, My =1

nth Fibonacci Elliptic Quaternions QF, =F, +Fprie1 + Fpioea + Frises
nth Lucas Elliptic Quaternions OL, =Ln + Lptie1 + Lnyoea + Lipgzes
nth Leonardo Elliptic Quaternions (ILH) QL, =20L, 1 —QL,_3

nth Leonardo-Lucas Elliptic Quaternions
(LHy,)

OLy, =29L1 -1 — QL1 -3

nth Modified-Leonardo Elliptic Quater-
nions (MH)

QMn = 2QM’I’L71 - QMnf?)

TABLE 2. The numbers which are mentioned in this paper.
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