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A new q-Laplace transform
with many examples

Abstract. In the spirit of Hahn 1949, the purpose of this paper is to in-
troduce a new q-Laplace transform for a Jackson q-integral

∫ a

0
f(t, q) dq(t),

with upper integration boundary 1
s(1−q)

. For this purpose we redefine this
q-integral with a σ-algebra and a discrete measure supported at the points
x = aqn, n ∈ N. Then we prove q-analogues of many well-known Laplace
transform formulas, including the formula for the transform of the delta dis-
tribution. The paper concludes with a list of q-Laplace transforms for (multi-
ple) q-hypergeometric series, some with function arguments in the first q-real
numbers R⊕q . Elsewhere, other q-real numbers are defined in similar style as
function arguments in formal power series.
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1. Introduction

In q-difference equations, the derivatives of differential equations are re-
placed by q-derivatives. The theory of q-difference equations is not fully ex-
plored, and there is, in particular, a need to define a correct q-Laplace trans-
form. Obviously, when this is known, all q-difference equations, which are
q-analogues of the corresponding ordinary, homogeneous differential equa-
tions with constant coefficients, can be solved. The reason is that these
differential equations have exponential and/or trigonometric solutions and
our q-analogues of these two functions (and of the derivative as well) have
the same q-Laplace transform. As a guide to the reader, who is assumed to
have some knowledge about Laplace transforms, all the details will be ex-
plained systematically. Hint: All beginner’s books on the Laplace transform
give a series of formulas, which are often repeated in each book. The weak
point in q-calculus is that there is no q-analogue of generalized integrals, al-
though these are stated e.g. in the book by Gasper and Rahman [13]. This
means that all formulas with generalized integrals for Laplace transforms,
which change order of integration or which make a linear substitution in
integrals, have no q-analogue. The experienced reader may now already
guess which formulas for Laplace transforms that we cannot q-deform. We
will, however, q-deform all the other, more transparent, ones.
The paper is organized as follows: In Section 1 we make a brief introduc-
tion to the subject. Section 2 introduces the notations, some of which can be
found in our book [8]. In Section 3 we briefly repeat the first q-real number
R⊕q from [10]. Section 4 presents a corrected version of the q-Laplace trans-
form by Chung, Kim and Kwon [2], and in Subsection 4.1 the fundamental
prerequisites for the Jackson q-integral are summarized. In Subsection 4.2,
finally, we give a correct version of the q-Laplace transform. In Subsec-
tion 4.3 we only present some typical proofs of several q-hypergeometric
q-Laplace transforms.

2. q-Calculus definitions

We now repeat some notations from [8]. Throughout, ≡ denotes a definition
and ∼= denotes a formal equality.

Definition 1. Let δ > 0 be an arbitrary small number. We will always use
the following branch of the logarithm: −π + δ < Im(log q) ≤ π + δ. This
defines a simply connected domain in the complex plane.
The power function is defined by

qa ≡ ea log(q).

The following notation is often used when long exponents appear.

QE(x) ≡ qx.
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Definition 2 ([8, p. 19]). The q-analogues of a complex number a, a natural
number n and the factorial are defined as follows:

{a}q ≡
1− qa

1− q
, q ∈ C\{0, 1},

{n}q ≡
n∑

k=1

qk−1, {0}q = 0, q ∈ C\{0, 1},

{n}q! ≡
n∏

k=1

{k}q, {0}q! ≡ 1, q ∈ C\{0, 1}.

Definition 3. The q-shifted factorial [8] is defined by

⟨a; q⟩n ≡
n−1∏
m=0

(1− qa+m).

Sometimes we also use

(a; q)n ≡
n−1∏
m=0

(1− aqm).

Definition 4. In the following, CZ will denote the space of complex numbers
mod 2πi

log q . This is isomorphic to the cylinder R× e2πiθ, θ ∈ R. The operator

˜: C
Z

→ C
Z

is defined by the 2-torsion

(1) a 7→ a+
πi

log q
.

By (1) it follows that

⟨̃a; q⟩n =

n−1∏
m=0

(1 + qa+m),

where this time the tilde denotes the involution which changes a minus sign
to a plus sign in all the n factors of ⟨a; q⟩n.
For relatively prime m, l, the generalized tilde operator

m̃
l :

C
Z

→ C
Z

is defined by

(2) a 7→ a+
2πim

l log q
.
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We also need another generalization of the tilde operator.

(3) ˜
k⟨a; q⟩n ≡

n−1∏
m=0

(
k−1∑
i=0

qi(a+m)

)
.

Formula (3) is used in (4).

The following simple congruence rules [8] follow from (2).

Theorem 1.
m̃
l a± b ≡ ˜m

l (a± b)

(
mod

2πi

log q

)
,

n∑
k=1

1̃
n ± ak ≡

n∑
k=1

±ak

(
mod

2πi

log q

)
,

m

l
× ã ≡

m̃
2l
am

l

(
mod

2πi

log q

)
,

QE(
m̃
l
a) = QE(a)e

2πim
l ,

where the second equation is a consequence of the fact that we work mod 2πi
log q .

Definition 5.

(4) ⟨λ; q⟩kn ≡ ⟨△(q; k;λ); q⟩n ≡
k−1∏
m=0

〈
λ+m

k
; q

〉
n

×k

〈 ˜λ+m

k
; q

〉
n

.

We also use the notation △(q; k;λ) as a parameter in q-hypergeometric
functions.
If λ is a vector, we mean the corresponding product of vector components.
If λ is replaced by a sequence of numbers, separated by commas, we mean
the corresponding product, as in the case of q-factorials.
The last factor in (4) corresponds to knk.

Definition 6 ([8, (1.45)]). The Γq function is defined by

Γq(z) ≡


⟨1; q⟩∞
⟨z; q⟩∞

(1− q)1−z, if 0 < |q| < 1;

⟨1; q−1⟩∞
⟨z; q−1⟩∞

(q − 1)1−zq(
z
2), if |q| > 1.
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Definition 7 ([8, (1.49)]). Let Sr denote the additional poles of Γq, vertical
if q is real and slanting if q is complex. Then the generalized Γq function,
a function (C\ ({Z ≤ 0} ∪ Sr))

p+r × C 7→ C, is defined as follows:

Γq

[
a1, . . . , ap
b1, . . . , br

]
≡ Γq(a1) . . .Γq(ap)

Γq(b1) . . .Γq(br)
.

This is a modest attempt to present a new notation for q-calculus and in
particular for q-hypergeometric series, which is compatible with the old no-
tation. With this notation, q-hypergeometric function- and hypergeometric
function equations become very similar.

Definition 8. Generalizing Heine series, we shall define a q-hypergeometric
series by

p+p′ϕr+r′

[
â1, . . . , âp
b̂1, . . . , b̂r

∣∣∣∣q; z∣∣∣∣∣∣∣∣ ∏i fi(k)∏
j gj(k)

]
≡

∞∑
k=0

⟨â1; q⟩k . . . ⟨âp; q⟩k
⟨1, b̂1; q⟩k . . . ⟨b̂r; q⟩k

[
(−1)kq(

k
2)
]1+r+r′−p−p′

zk
∏

i fi(k)∏
j gj(k)

,

where

â ≡ a ∨ ã ∨
m̃
l a ∨k ã ∨△(q; l;λ).

In case of △(q; l;λ) the index is adjusted accordingly. It is assumed that
the denominator contains no zero factors, i.e. b̂k ̸= −l + 2mπi

logq , k = 1, . . . , r,
l,m ∈ N [18]. We assume that the fi(k) and gj(k) contain p′ and r′ factors
of the form ⟨â(k); q⟩k or (s(k); q)k respectively.

The following definition, as in the one-variable case, allows easy limits for
parameters to ±∞.
The first definition is a q-analogue of [19, (24), p. 38], in the spirit of
Srivastava. The second definition is a q-analogue of [19, (24), p. 38] with
the restraint [19, (29), p. 38], due to Karlsson. It will be clear from the
context which of the definitions we use.

Definition 9 ([8, p. 367 f]). Let the vectors

(a), (b), (gi), (hi), (a
′), (b′), (g′i), (h

′
i)

have lengths

A,B,Gi, Hi, A
′, B′, G′

i, H
′
i.

Let

1 +B +B′ +Hi +H ′
i −A−A′ −Gi −G′

i ≥ 0, i = 1, . . . , n.
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Then the generalized q-Kampé de Fériet function is defined by

Φ
A+A′:G1+G′

1;...;Gn+G′
n

B+B′:H1+H′
1;...;Hn+H′

n

[
ˆ(a) : ˆ(g1); . . . ; ˆ(gn)
ˆ(b) : ˆ(h1); . . . ; ˆ(hn)

∣∣∣∣∣q⃗; x⃗
∣∣∣∣∣
∣∣∣∣∣ (a′) : (g′1); . . . ; (g

′
n)

(b′) : (h′1); . . . ; (h
′
n)

]

≡
∑
m⃗

⟨ ˆ(a); q0⟩m(a′)(q0,m)
∏n

j=1(⟨ ˆ(gj); qj⟩mj ((g
′
j)(qj ,mj)x

mj

j )

⟨ ˆ(b); q0⟩m(b′)(q0,m)
∏n

j=1(⟨ ˆ(hj); qj⟩mj (h
′
j)(qj ,mj)⟨1; qj⟩mj )

× (−1)
∑n

j=1 mj(1+Hj+H′
j−Gj−G′

j+B+B′−A−A′)

×QE
(
(B +B′ −A−A′)

(
m

2

)
, q0

)
×

n∏
j=1

QE
(
(1 +Hj +H ′

j −Gj −G′
j)

(
mj

2

)
, qj

)
.

It is assumed that there are no zero factors in the denominator and that
(a′)(q0,m), (g′j)(qj ,mj), (b

′)(q0,m), (h′j)(qj ,mj) contain factors of the form

⟨ ˆa(k); q⟩k, (s; q)k, (s(k); q)k or QE (f(m⃗)).

Definition 10 ([8, p. 368 f]). Let the vectors

(a), (b), (gi), (hi), (a
′), (b′), (g′i), (h

′
i)

have lengths

A,B,G,H,A′, B′, G′, H ′.

Let

1 +B +B′ +H +H ′ −A−A′ −G−G′ ≥ 0.

Then the generalized q-Kampé de Fériet function is defined by

ΦA+A′:G+G′

B+B′:H+H′

[
ˆ(a) : ˆ(g1); . . . ; ˆ(gn)
ˆ(b) : ˆ(h1); . . . ; ˆ(hn)

∣∣∣∣∣q⃗; x⃗
∣∣∣∣∣
∣∣∣∣∣ (a′) : (g′1); . . . ; (g

′
n)

(b′) : (h′1); . . . ; (h
′
n)

]

≡
∑
m⃗

⟨ ˆ(a); q0⟩m(a′)(q0,m)
∏n

j=1(⟨ ˆ(gj); qj⟩mj ((g
′
j)(qj ,mj)x

mj

j )

⟨ ˆ(b); q0⟩m(b′)(q0,m)
∏n

j=1(⟨ ˆ(hj); qj⟩mj (h
′
j)(qj ,mj)⟨1; qj⟩mj )

× (−1)
∑n

j=1 mj(1+H+H′−G−G′+B+B′−A−A′)

×QE
(
(B +B′ −A−A′)

(
m

2

)
, q0

)
×

n∏
j=1

QE
(
(1 +H +H ′ −G−G′)

(
mj

2

)
, qj

)
,

where

â ≡ a ∨ ã ∨
m̃
l a ∨k ã ∨△(q; l;λ).
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It is assumed that there are no zero factors in the denominator. We assume
that (a′)(q0,m), (g′j)(qj ,mj), (b

′)(q0,m), (h′j)(qj ,mj) contain factors of the

form ⟨ ˆa(k); q⟩k, (s; q)k, (s(k); q)k or QE (f(m⃗)).
The numbers in front of the colon represent the number of q-shifted fac-
torials with index m in numerator and the denominator. The numbers after
the colon denote the number of q-shifted factorials with index mi in numer-
ator and the denominator. Equally, the numbers after semicolon denote the
number of q-shifted factorials with index mi in numerator and denomina-
tor. We can leave out G2 if it is equal to G1 for two variables etc. Every ∞
corresponds to multiplication with 1.

Definition 11. The q-derivative is defined by

(Dqφ) (x) ≡



φ(x)− φ(qx)

(1− q)x
, when q ∈ C\{1}, x ̸= 0;

dφ

dx
(x), when q = 1;

dφ

dx
(0), when x = 0.

Definition 12. Let the Gaussian q-binomial coefficients be defined by(
n

k

)
q

≡ ⟨1; q⟩n
⟨1; q⟩k⟨1; q⟩n−k

, k = 0, 1, . . . , n.

Theorem 2. The q-binomial theorem:
∞∑
n=0

⟨a; q⟩n
⟨1; q⟩n

zn =
(zqa; q)∞
(z; q)∞

,

|z| < 1, 0 < |q| < 1.

Definition 13. If |q| > 1 ∨ 0 < |q| < 1, |z| < |1 − q|−1, the q-exponential
function Eq(z) is defined by

(5) Eq(z) ≡
∞∑
k=0

1

{k}q!
zk.

By the Euler equation (6), the meromorphic continuation of Eq(z) is given
by

1

(z(1− q); q)∞
.

Thus the meromorphic function 1
(z(1−q);q)∞

, with simple poles at q−k

1−q , k ∈ N
is a good substitute for Eq(z) in the whole complex plane. We shall however
continue to designate this function Eq(z), since it plays an important role
in the operator theory.
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The q-difference for Eq(z) is

Dq Eq(az) = a Eq(az).

There is another q-exponential function which is entire when 0 < |q| < 1
and which converges when |z| < |1− q|−1 if |q| > 1. To obtain it, the base
in (5) must be inverted, i.e. q → 1

q . This is a common theme in q-calculus.

Definition 14.

E 1
q
(z) ≡

∞∑
k=0

q(
k
2)

{k}q!
zk.

We immediately obtain

E 1
q
(z) =

∞∏
n=0

(1 + (1− q)zqn) , 0 < |q| < 1.

The q-difference equation for E 1
q
(z) is

DqE 1
q
(az) = aE 1

q
(qaz),

which reduces to the differential equation of the exponential function when
q tends to unity.
For later use, we shall need a third q-exponential function:

Definition 15.

Ẽ 1
q
(z) ≡

∞∑
k=0

(k + 1)q(
k+1
2 )

{k + 1}q!
zk.

Definition 16. Euler found the following two extra q-analogues of the ex-
ponential function:

(6)

eq(z) ≡ 1ϕ0(∞;−|q; z)

≡
∞∑
n=0

zn

⟨1; q⟩n
=

1

(z; q)∞
, |z| < 1, 0 < |q| < 1.

e 1
q
(z) ≡ 0ϕ0(−;−|q;−z) ≡

∞∑
n=0

q(
n
2)

⟨1; q⟩n
zn = (−z; q)∞, 0 < |q| < 1.

The second function is an entire function just as the usual exponential
function.

Definition 17. We can now define four q-analogues of the trigonometric
functions. In the first two equations, |q| > 1, or 0 < |q| < 1 and |x| <
|1− q|−1.

Sinq(x) ≡
1

2
(Eq(ix)− Eq(−ix)).

Cosq(x) ≡
1

2
(Eq(ix) + Eq(−ix)).
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Sin 1
q
(x) ≡ 1

2
(E 1

q
(ix)− E 1

q
(−ix)).

Cos 1
q
(x) ≡ 1

2
(E 1

q
(ix) + E 1

q
(−ix)),

where x ∈ C in the last two equations.

Definition 18 ([8]). Three q-Appell function are defined by [9]:

Φ1(a; b, b
′; c|q;x1, x2) ≡

∞∑
m1,m2=0

⟨a; q⟩m1+m2⟨b; q⟩m1⟨b′; q⟩m2

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1+m2

xm1
1 xm2

2 ,

max(|x1|, |x2|) < 1.

Φ2(a; b, b
′; c, c′|q;x1, x2) ≡

∞∑
m1,m2=0

⟨a; q⟩m1+m2⟨b; q⟩m1⟨b′; q⟩m2

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1⟨c′; q⟩m2

xm1
1 xm2

2 ,

|x1| ⊕q |x2| < 1.

Φ4(a; b; c, c
′|q;x1, x2) ≡

∞∑
m1,m2=0

⟨a; q⟩m1+m2⟨b; q⟩m1+m2

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1⟨c′; q⟩m2

xm1
1 xm2

2 ,

|
√
x1| ⊕q |

√
x2| < 1.

Remark 1. The function Φ1 occurs in formulas (33), (36). The function
Φ2 occurs in formulas (31), (43). The function Φ4 occurs in (30).

Since the number of q-shifted factorials in denominators is larger than in
numerators for q-confluent functions, by the quotient criterion, the conver-
gence regions are drastically increased. These convergence regions in the
confluent hypergeometric case were only given by Srivastava and Karlsson
in [19].

Definition 19.

Ψ1(a; b; c, c
′|q;x1, x2) ≡

∞∑
m1,m2=0

⟨a; q⟩m1+m2⟨b; q⟩m1

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1⟨c′; q⟩m2

xm1
1 xm2

2 ,

|x1| < 1, |(1− q)x2| < ∞,

Ψ2(a; c, c
′|q;x1, x2) ≡

∞∑
m1,m2=0

⟨a; q⟩m1+m2

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1⟨c′; q⟩m2

xm1
1 xm2

2 ,

|(1− q)x1| < ∞, |(1− q)x2| < ∞,

Υ1(a; b; c|q;x1, x2) ≡
∞∑

m1,m2=0

⟨a; q⟩m1+m2⟨b; q⟩m1

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1+m2

xm1
1 xm2

2 ,

|x1| < 1, |(1− q)x2| < ∞.
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Υ2(a, a
′; c|q;x1, x2) ≡

∞∑
m1,m2=0

⟨a; q⟩m1⟨a′; q⟩m2

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1+m2

xm1
1 xm2

2 ,

|(1− q)x1| < ∞, |(1− q)x2| < ∞.

Υ3(a; c|q;x1, x2) ≡
∞∑

m1,m2=0

⟨a; q⟩m1

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1+m2

xm1
1 xm2

2 ,

|(1− q)x1| < ∞, |(1− q)2x2| < ∞.

Ξ1(a, a
′; b; c|q;x1, x2) ≡

∞∑
m1,m2=0

⟨a; q⟩m1⟨a′; q⟩m2⟨b; q⟩m1

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1+m2

xm1
1 xm2

2 ,

|x1| < 1, |(1− q)x2| < ∞.

Ξ2(a; b; c|q;x1, x2) ≡
∞∑

m1,m2=0

⟨a; q⟩m1⟨b; q⟩m1

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1+m2

xm1
1 xm2

2 ,

|x1| < 1, |(1− q)2x2| < ∞.

3. Survey of q-real numbers

The q-real numbers give a convenient notation for q-additions in formal
power series, in particular for q-exponential and q-trigonometric functions.
There is a one-to-one correspondence between the convergence regions of
the two q-Lauricella functions Φ(n)

A and Φ
(n)
C , and the existence of q-real

numbers with n letters (or variables).

Definition 20 ([8, p. 24]). Let a, b ∈ R. Then the NWA q-addition is given
by

(7) (a⊕q b)
n ≡

n∑
k=0

(
n

k

)
q

akbn−k, n = 0, 1, 2, . . . , a⊕q b ∈ R⊕q .

In particular, (a⊕q b)
0 ≡ 1. Furthermore, we put

(a⊖q b)
n ≡

n∑
k=0

(
n

k

)
q

ak(−b)n−k, n = 0, 1, 2, . . . .

Definition 21 ([10]). Let In ⊂ Rn, I ≡ (0, 1] denote the half-open n-
dimensional hypercube. For q fixed, the q-real numbers R⊕q form a subset
of the disjoint union of all hypercubes

R⊕q ⊂
∞⋃
n=2

In.
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For the following definition one could compare with the formula [8, 4.74
p. 110]:

Definition 22. Given k ∈ N, the formula

m0 +m1 + · · ·+mj = k

determines a set Jm0,...,mj ∈ Nj+1.

Definition 23. For m⃗ ∈ Nn put

|m⃗| ≡ m1 + ...+mn.

If f(x) is the formal power series
∑∞

l=0 alx
l, its kth NWA-power is given by

(⊕∞
q,l=0alx

l)k ≡ (a0 ⊕q a1x⊕q . . .)
k ≡

∑
|m⃗|=k

∏
ml∈Jm0,...,mj

(alx
l)ml

(
k

m⃗

)
q

.

For a = (a1, ..., an) ∈ In put

(a1 ⊕q a2 ⊕q . . .⊕q an)
k ≡

∑
|⃗m|=k

∏
ml∈Jm0,...,mj

(al)
ml

(
k

m⃗

)
q

.

Conjecture 1 ([10]). If the function

F (k) ≡ (a1 ⊕q a2 ⊕q . . .⊕q an)
k

has exactly one absolute maximum in N, then we have limk→∞ F (k) = 0.

Definition 24. We have a⃗ := (a1, ..., an) ∈ R⊕q exactly when the function
F (k) has exactly one absolute maximum.

For the commutative monoid R⊕q we note the following definitions and
formulas:

Definition 25. Assume that ∼ means equality on R[[x]] [8, p. 101].
There is a certain linear functional v : R[[x]] × Rq 7→ R, with v(f, 0) =

a0 ∈ R, called the evaluation.

Theorem 3. The q-addition (7) has the following properties, for α, β, γ ∈
R⊕q :
Commutativity:

α⊕q β ∼ β ⊕q α.

Associativity
(α⊕q β)⊕q γ ∼ α⊕q (β ⊕q γ).

To be able to formulate equation (22), q-Laplace transform of multi-
plication with Eq(αt), we introduce the following extension of the umbral
calculus. Compare with the three formulas in [8, p. 103].
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Definition 26. The q-addition x⊎qy is defined by another q-Taylor formula:

(8) F (x ⊎q y) ≡
∞∑
n=0

yn

{n}q!
q(

n
2)Dn

q,xF (q−nx).

As before, only positive integer powers of (x ⊎q y) are used. We call the
function argument in (8) R⊎q .

4. On the q-Laplace transform

Several authors have tried to introduce different q-Laplace transforms with
upper q-integration limits ∞ and (s(1 − q))−1. The latter converges to
∞ when q → 1−. Also a time-scale approach to this problem has been
published by Martin Bohner et al. [1], who used operators similar to our
q-real numbers.
This paper was enabled by Erik Koelink and Tom Koornwinder [16],
who, in 1992 presented the correct Γq function expression as a q-integral
with E 1

q
(x), which enables the correct q-integration by parts proofs. This

was possible by using the product expansion for the q-exponential E 1
q
(x).

Later, in 2005, Kac et al. [3] payed attention to this, and showed how to
express the Γq function as a q-integral with Eq(x) times an extra factor, a
q-analogue of 1. Finally, in 2014, Chung, Kim and Kwon [2] tried to find
a q-Laplace transform, which would be useful for practical purposes. We
shall now find q-analogues of many properties of the Laplace transform by
improving the treatment of the cited paper [2], so as to obtain formulas
that do not involve q-integrals of the form

∫∞
0 , which may be difficult to

define. We point out that we shall use the Hahn q-Laplace transform [15],
correcting a slight misprint.

4.1. Preliminaries: properties of the q-integral. We first repeat the
definitions of q-integrals from [8]. Note that the definitions of these q-
integrals for a, b ∈ R⊕q in [8, (4.80)] are only for umbral use.

Definition 27. The Jackson q-integral is defined by∫ b

a
f(t, q) dq(t) ≡

∫ b

0
f(t, q) dq(t)−

∫ a

0
f(t, q) dq(t), a, b ∈ R,

where

(9)
∫ a

0
f(t, q) dq(t) ≡ a(1− q)

∞∑
n=0

f(aqn, q)qn, 0 < |q| < 1, a ∈ R.

We now show how the main integral theorems are included in q-analysis.

Definition 28. Let En ≡ {aqn}, n = 1, 2, 3, . . . , a ∈ R⋆ be distinct single-
ton sets, with respective measures a(1−q)qn. Then the σ–algebra is defined
by M ≡ {µ(En) = (1− q)qn}∞n=0.
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By the measure definition, we then have

µ

(∞⋃
0

En

)
=

∞∑
n=0

µ(En).

The q-integral (9) can be written in the form

∞∑
n=0

f(aqn)µ(En),

which is the q-integral of f with respect to an infinite discrete measure, that
converges weakly to a Lebesgue measure as q → 1−.
Put

F (x) ≡
∫ x

0
f(t, q) dq(t).

Then [5]:

(1) If F (x) is well-defined, then Dqf(x) = F (x).
(2) If f(x) is continuous on the closed disk D(0, r+), then F (x) is well-
defined for any x ∈ D(0, r+). In fact there exists K > 0 such that
|f(qnx)qn| ≤ K|q|n, which guarantees the convergence of the infinite
sum.

Let L1
q denote the Banach space of all q-integrable functions on the inter-

val I. The following three theorems are proved analogously to the standard
case.

Theorem 4 ([12, p. 52]). Triangle inequality.
Let f(x) ∈ L1

q. Then ∣∣∣∣∫ fdµ

∣∣∣∣ ≤ ∫ |f | dµ.

Theorem 5. Let {fn}∞0 be a continuous sequence with limit function

(10) f = lim
n→∞

fn,

which converges uniformly. Then we have

(11) lim
n→∞

∫
fndµ =

∫
fdµ.

Proof. ∣∣∣∣∫ fndµ−
∫

fdµ

∣∣∣∣ ≤ ∫ |fn− f |dµ ≤
∫

∥fn − f∥dµ

= ∥fn − f∥
∫

dµ → 0, n → ∞. □
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Theorem 6. If the conditions in (10) are satisfied, then we have∫ ∞∑
n=0

fn(x)dµ =

∞∑
n=0

∫
fn(x)dµ.

Proof. Use (11). □

Definition 29. Let Λq be the set of all piecewise q-differentiable functions
on (0,∞). We only consider functions in C[[z]], except the Heaviside step
and Dirac functions, which have known q-Laplace transforms.

Definition 30. The equivalence relation Aq on R+ is defined as follows:
Elements a, b > 0 belong to the same equivalence class,

a ∼ b ⇐⇒ ∃n ∈ Z : log
a

b
= n log q.

The equivalence class [a], a ∈ R+ is defined as follows:

[a] ≡ {x | ∃n ∈ Z : x = aqn}.

Theorem 7 ([8, p. 204], [14], [17]). Multiplicative substitution in a q-inte-
gral:

(12)
∫ x

0
f(t, q) dq(t) = b

∫ x
b

0
f(bt, q) dq(t).

Theorem 8. Power substitutions f(xk, q) 7→ f(t, q), k ∈ N in q-integrals:∫ a

0
f(xk, q) dq(x) =

1

{k}q

∫ a

0
t
1−k
k f(t, q) dqk(t), a ∈ R.

Proof. We compute the right hand side.

1− q

1− qk
a(1− qk)

∞∑
n=0

q(1−k)nf(aqkn, q)qkn

= a(1− q)
∞∑
n=0

f(aqkn, q)qn.

This equals the left hand side. □

The formulas for substitution in q-integrals above lead to formulas for
re-scaling of the measure µ(En), compare with Diaz, Pariguan [4, p. 3].
Assume that 0 < a < b, c > 0.
For (9) we have :

µ(En)[ca, cb] = cµ(En)[a, b].
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4.2. One-sided q-Laplace transform. This section aims at developing
the q-Laplace transform to be used when solving q-difference equations.
We start with the following formula [16]:

(13) Γq(z) =

∫ 1
1−q

0
tz−1E 1

q
(−qt) dq(t), Re(z) > 0.

We shall now present a corrected version of Hahn [15, (9.1), p. 371].

Theorem 9. Hahn’s definition [15, (9.1), p. 371] does not converge to the
Laplace transform when limq→1−.

Proof. Hahn writes in other notation

Lq(s) ≡
1

1− q

∫ 1
s

0
f(t)E 1

q

(
−qst

1− q

)
dq(t)

by(12)
=

∫ 1
s(1−q)

0
f(t(1− q))E 1

q
(−qst) dq(t),

where we put b = 1 − q in (12). But when limq→1− the function argument
in the q-integral converges to 0, which makes no sense. □

The classical Laplace transform, well known to applied mathematicians
and engineers, maps suitable real-valued or complex-valued functions f(t),
t > 0, to corresponding functions F (s) of another variable s, which are
defined for Re s > s0, where s0 is function-specific.
When defining the q-Laplace transform, we must use formula (13) and
the second q-exponential function E 1

q
(x), which is entire and has an infinite

number of zeros for x = − qn

1−q . The first q-exponential function is not
suitable, since it is not entire and has an infine number of poles. This
means that we can only define one q-Laplace transform.

Definition 31. Assume that Re(s) > β, and let the function f ∈ Λq. Then
the one-sided q-Laplace transform of f , as a function of s, is defined by

(14) Lq(s) ≡ Lq(f(t)) ≡
∫ 1

s(1−q)

0
f(t)E 1

q
(−qst) dq(t).

If f is discontinuous, we divide the q-integral into the corresponding con-
tinuous parts.

Formula (14) is perfectly well defined, since
(1) The upper q-integral limit converges to ∞ for limq→1−

(2) The value of the second q-exponential at the upper q-integral limit
is the second zero of E 1

q
.

(3) We chose the function E 1
q
(−qst) to get simpler formulas for the q-

Laplace transform, after q-integration by parts, which is often used
in the proofs.
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Remark 2. In the theory of the classical Laplace transform, functions f(t)
undergoing transformation are usually required to be ‘of exponential type’,
so that the integral defining F (s), which is over the interval t ∈ (0,∞), will
converge for sufficiently large Re s. The new q-Laplace transform involves a
q-integral over a finite interval, from 0 to 1

s(1−q) ; so presumably the function
f(t) could fail to be of exponential type, without its q-Laplace transform
failing to be defined; though its limq→1− limit would not exist.

Remark 3. A q-Laplace transform F (s) may exist without being defined
for all s with Re s > 0. Two examples are formulas (19) and (20).

The one-sided q-Laplace transform (14) has the following properties:
Linearity for q-Laplace transform:

(15) Lq(af(t) + bg(t)) = aLq(f(t)) + bLq(g(t)), f, g ∈ Λq.

Proof. This follows from the linearity of the q-integral. □

We shall compute some q-Laplace transforms, which occur most often.

Theorem 10. The q-Laplace transform of a power function is given by

(16) Lq(t
α) =

1

sα+1
Γq(α+ 1), α ̸= −n, n ∈ N.

Proof. By q-integration by parts, we can show that the function

I(s, α) ≡
∫ 1

s(1−q)

0
tαE 1

q
(−qst) dq(t)

satisfies the recurrence

I(s, α) =
{α}q
s

I(s, α− 1),

which is equivalent to (16). To this end put u(t, q, α) = tα, v(t, q, s) =
−1

sE 1
q
(−st) in [8, (6.58)]. For E 1

q
(−qst), use the q-derivative formula

[8, (6.154)]. □

Corollary 11. A q-analogue of [20, (50), p. 163], [6, p. 192]. The one-
sided q-Laplace transform of a general q-hypergeometric series times a power
function is given by

Lq(t
λ−1

pϕp−1 (a1, . . . , ap; b1, . . . , bp−1|q; t))

=
Γq(λ)

sλ
p+1ϕp

(
λ, a1, . . . , ap; b1, . . . , bp−1,∞|q; (s(1− q))−1

)
.

Corollary 12. A q-analogue of [20, (52), p. 164]:

Lq(t
γ−1

2ϕ1 (α,∞; γ|q; t(1− q))) =
Γq(γ)

sγ
1

(1s ; q)α
.

Proof. Use the q-binomial theorem. □
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Theorem 13. Let H(t− a) denote the Heaviside function, where a ≥ 0:

H(t− a) ≡

{
0, 0 ≤ t < a;

1, t ≥ a.

The q-Laplace transform of H(t− a) is given by

(17) Lq(H(t− a)) =
1

s
E 1

q
(−as).

Proof. ∫ 1
s(1−q)

a
E 1

q
(−qst) dq(t) =

[
−1

s
E 1

q
(−st)

] 1
s(1−q)

a

.

This equals the right hand side, since the upper limit is the first zero of
E 1

q
. □

Theorem 14. Let δ(t− a) denote the Dirac distribution, where a ≥ 0.
Then the q-Laplace transform of δ(t− t0) is given by

Lq(δ(t− t0)) = Ẽ 1
q
(−st0), t0 ≥ 0.

Proof. Put δa(t − t0) ≡ 1
2a [H(t− (t0 − a))−H(t− (t0 + a))]. The Dirac

distribution can be expressed as

δ(t− t0) = lim
a→0

δa(t− t0).

By linearity and formula (17) this implies

(18) Lq(δa(t− t0)) =
1

2a

[
1

s

[
E 1

q
(−s(t0 − a))− E 1

q
(−s(t0 + a))

]]
.

This is an indeterminate expression 0/0 and we therefore use L’Hôpital’s
rule ⋆:

Lq(δ(t− t0))
by(18)
= lim

a→0

1

2s

∂

∂a

[ ∞∑
k=0

q(
k
2)

{k}q!

[
(as− st0)

k − (−as− st0)
k
]]

by⋆
= lim

a→0

1

2

∞∑
k=1

k · q(
k
2)

{k}q!

[[
(as− st0)

k−1 + (−as− st0)
k−1
]]

= RHS. □
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Lemma 15. Scaling is given by

Lq(f(at)) =
1

a
Lq;af

(s
a

)
, a > 0.

Proof. Use formula (12). □

Theorem 16. The q-Laplace transform of the q-exponential is given by

(19) Lq(Eq(αt)) =
1

s− α
, Re

(α
s

)
< 1.

Proof. In the end, the geometric series converges.∫ 1
s(1−q)

0
E 1

q
(−qst)Eq(αt) dq(t) =

∞∑
n=0

αn

{n}q!

∫ 1
s(1−q)

0
E 1

q
(−qst)tn dq(t)

by(16)
=

∞∑
n=0

αn

{n}q!
Γq(n+ 1)

sn+1
=

1

s

∞∑
n=0

(α
s

)n
=

1

s

1

1− α
s

= RHS. □

Theorem 17. The q-Laplace transform of the second q-exponential is given
by

(20) Lq

(
E 1

q
(αt)

)
=

1

s
1ϕ1

(
1;∞|q;−α

s

)
, Re

(α
s

)
< 1.

Proof. Similar to above, the series converges even better. □

Theorem 18. The q-Laplace transform of q-Sine, where a ∈ C and Re s >
max[Re(ia), Re(−ia)] is given by

Lq(Sinq(αt)) =
α

s2 + α2
.

The q-Laplace transform of q-Cosine is given by

Lq(Cosq(αt)) =
s

s2 + α2
.

Proof. Use formulas (15) and (19). □

Theorem 19. The q-Laplace transform of the nth iterated q-derivative can
be expressed as a sum of Di

q(f(0
+)), the ith q-derivative of the function being

transformed, evaluated at t = 0, or at least evaluated in the limit t → 0+:

Lq(Dn
q (f(t))) = snLq(f(t))−

n−1∑
i=0

sn−1−iDi
q(f(0

+)), f ∈ Λq.
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Proof. We use q-integration by parts [8, (6.59)].∫ 1
s(1−q)

0
E 1

q
(−qst)Dn

q (f(t)) dq(t) = [E 1
q
(−st)Dn−1

q (f(t))]∞0

+ s

∫ 1
s(1−q)

0
q(−qst)Dn−1

q (f(t)) dq(t)

= −Dn−1
q (f(0)) + s[E 1

q
(−st)Dn−2

q (f(t))]∞0

+ s2
∫ 1

s(1−q)

0
E 1

q
(−qst)Dn−2

q (f(t)) dq(t) + · · · = RHS. □

Remark 4. Since f ∈ Λq, this is guaranteed to be finite, except possibly
in the discontinuous points.

Corollary 20. Initial and final value theorems.

lim
s→∞

sLq(f) = lim
t→0+

f(t),

lim
s→0

sLq(f) = lim
t→∞

f(t).

Proof. Use the previous theorem with n = 1. In the first case, the LHS
goes to zero when s → ∞. In the second case, cancel the two terms f(0+)
on each side after letting s → 0+. On the LHS lims→0+

1
s(1−q) = +∞.

A simpler way is to use the formula (12) for multiplicative substitution
in q-integral with the values x = 1

s(1−q) and a = 1
s . □

Theorem 21. The q-Laplace transform of multiplication with a power func-
tion is given by

(21) Lq(t
nf(t)) = (−1)nq(

n
2)Dn

q,sLqf(q
−ns), f ∈ Λq.

Proof.

(−1)nq(
n
2)Dn

q,sLq(q
−ns) = (−1)nq(

n
2)
∫ 1

s(1−q)

0
Dn

q,s(E 1
q
(−q1−nst))f(t) dq(t)

by[8, (6.154)]
=

∫ 1
s(1−q)

0
E 1

q
(−qst)tnf(t) dq(t) = LHS. □

Theorem 22. The q-Laplace transform of multiplication with Eq(αt) is
given by

(22) Lq(Eq(αt)f(t)) = Lqf(s ⊎q −α), f ∈ Λq.

Proof.

LHS
by(15)
=

∞∑
n=0

αn

{n}q!
Lq(t

nf(t))
by(21)
=

∞∑
n=0

(−α)n

{n}q!
q(

n
2)Dn

q,sLqf(q
−ns)

by(8)
= RHS. □
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Example 1. We show a simple calculation.

Lq(tSinq(at))
by(21)
= −Dq,s

[
a

s2

q2
+ a2

]
=

{2}qas
(s2 + a2)(s2 + q2a2)

.

The following table 1 shows the basic q-Laplace transforms.

f(t) Lq(s)

tα
1

sα+1
Γq(α+ 1)

tγ−1
2ϕ1 (α,∞; γ|q; t(1− q))

Γq(γ)

sγ
((1s ; q)α)

−1

H(t− a) s−1E 1
q
(−as)

δ(t− t0) Ẽ 1
q
(−st0), t0 ≥ 0

f(at)
1

a
Lq;a

(s
a

)
, a > 0

Eq(αt)
1

s− α
, Re

(α
s

)
< 1

E 1
q
(αt)

1

s
1ϕ1

(
1;∞

∣∣∣q;−α

s

)
, Re

(α
s

)
< 1

Sinq(αt)
α

s2 + α2

Cosq(αt)
s

s2 + α2

Dn
q (f(t) snLq(f(t))−

∑n−1
i=0 sn−1−iDi

q(f(0))

tnf(t) (−1)nq(
n
2)Dn

q,sLqf(q
−ns)

Eq(αt)f(t) Lq(f(s ⊎q −α))

Table 1. The q-Laplace transforms

4.3. Advanced q-hypergeometric transforms. We continue with some
examples of q-Laplace transforms, which are all q-analogues of Exton [11,
p. 223–224]. I moved Exton [11, A 6.1.15] and [11, A 6.1.16, p. 224] to the
next theorem.
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Theorem 23.

1

Γq(a)
Lq

(
ta−1

2ϕ1

[
2∞
c

∣∣∣∣q;xt2])
=

1

sa
4ϕ3

[
△(q; 2; a)
c, 2∞

∣∣∣∣q; x

(s(1− q))2

]
.

(23)

1

Γq(a)
Lq

(
ta−1

2ϕ1

[
2∞
a

∣∣∣∣q;xt]) =
1

sa
Eq

(
x

s(1− q)2

)
.(24)

1

Γq(a)
Lq

(
ta−1

2ϕ1

[
2∞
c

∣∣∣∣q; (x1t⊕q x2)

])
=

1

sa
Υ3

(
a; c

∣∣∣∣q; x1
s(1− q)

, x2

)
.

(25)

1

Γq(a)
Lq

(
ta−1

2ϕ1

[
b,∞
c

∣∣∣∣q; (x1t⊕q x2)

])
=

1

sa
Υ1

(
b, a; c

∣∣∣∣q; x1
s(1− q)

, x2

)
.

(26)

1

Γq(a)
Lq

(
ta−1Ψ2

(
b; c, c′|q;x1t, x2

))
=

1

sa
Ψ1

(
b, a; c, c′

∣∣∣∣q; x1
s(1− q)

, x2

)
.

(27)

1

Γq(a)
Lq

(
ta−1

2ϕ1

[
2∞
c

∣∣∣∣q;x1t] 2ϕ1

[
2∞
c′

∣∣∣∣q;x2t])
=

1

sa
Ψ2

(
a; c, c′

∣∣∣∣q; x1
s(1− q)

,
x2

s(1− q)

)
.

(28)

1

Γq(a)
Lq

(
ta−1

2ϕ1

[
2∞
c

∣∣∣∣q;x1t2] 2ϕ1

[
2∞
c′

∣∣∣∣q;x2t2])
=

1

sa
Φ4:2
4:1

[
△(q; 2; a) : 2∞; 2∞

4∞ : c; c′

∣∣∣∣q; x1
(s(1− q))2

,
x2

(s(1− q))2

]
.

(29)

1

Γq(a)
Lq

(
ta−1Ψ2

(
b; c, c′|q;x1t, x2t

))
=

1

sa
Φ4

(
a, b; c, c′

∣∣∣∣q; x1
s(1− q)

,
x2

s(1− q)

)
.

(30)

1

Γq(a)
Lq

(
ta−1

2ϕ1

[
b,∞
c

∣∣∣∣q;x1t] 2ϕ1

[
b′,∞
c′

∣∣∣∣q;x2t])
=

1

sa
Φ2

(
a, b, b′; c, c′

∣∣∣∣q; x1
s(1− q)

,
x2

s(1− q)

)
.

(31)
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1

Γq(a)
Lq

(
ta−1Ψ2 (b; a, c|q;x1t, x2)

)
=

1

sa( x1
s(1−q) ; q)b

3ϕ2

[
b, 2∞
c

∣∣∣∣q;x2∣∣∣∣∣∣∣∣ ·
( x1
s(1−q)q

b; q)k

]
,∣∣∣∣ x1

s(1− q)

∣∣∣∣ < 1.

(32)

Proof. First we prove (25). The left hand side equals

1

Γq(a)

∫ 1
s(1−q)

0
ta−1E 1

q
(−qst)

∞∑
m1,m2=0

(x1t)
m2xm1−m2

2

⟨c; q⟩m1⟨1; q⟩m2⟨1; q⟩m1−m2

dq(t)

by(16)
=

∞∑
m1,m2=0

Γq

[
a+m2

a

]
xm2
1 xm1−m2

2

⟨1; q⟩m2⟨1; q⟩m1−m2⟨c; q⟩m1s
a+m2

by[8, (1.46)]
= RHS.

Then we prove formula (32). The left hand side equals

1

Γq(a)

∫ 1
s(1−q)

0
ta−1E 1

q
(−qst)

∞∑
m1,m2=0

⟨b; q⟩m1+m2

⟨a, 1; q⟩m1⟨c, 1; q⟩m2

(x1t)
m1xm2

2 dq(t)

by(16)
=

∞∑
m1,m2=0

Γq

[
a+m1

a

]
⟨b; q⟩m1+m2

⟨a, 1; q⟩m1⟨c, 1; q⟩m2s
a+m1

xm1
1 xm2

2

by[8, (1.46)]
=

1

sa

∞∑
m2=0

⟨b; q⟩m2

⟨c, 1; q⟩m2

xm2
2

×
∞∑

m1=0

⟨b+m2⟩m1

⟨1; q⟩m1

(
x1

s(1− q)

)m1
by[8, (7.27)]

= RHS. □

The following formulas are all q-analogues of Erdélyi [7].

Theorem 24. For Re(b′) > 0, Re(s) > 0, Re(s) > Re(|y|), we have a q-
analogue of Erdélyi [7, 1, p. 222]:

1

Γq(b′)
Lq

(
tb

′−1 Υ1 (a; b; c|q;x, yt)
)

=
1

sb′
Φ1

(
a, b, b′; c

∣∣∣∣q;x, y

s(1− q)

)
.

(33)

For Re(b) > 0, Re(s) > 0, Re(s) > Re(|x|), we have a q-analogue of Erdélyi
[7, 2, p. 222]:

1

Γq(b)
Lq

(
tb−1 Υ2

(
a, a′; c

∣∣q;xt, y))
=

1

sb
Ξ1

(
a, a′, b; c

∣∣∣∣q; x

s(1− q)
, y

)
.

(34)
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For Re(c) > 0, Re(s) > max(Re(|x|),Re(|y|)), we have a q-analogue of
Erdélyi [7, 3, p. 222]:

1

Γq(c)
Lq

(
tc−1 Υ2

(
b, b′; c

∣∣q;xt, y)) = 1

sc
(

x
(s(1−q)) ; q

)
b

(
y

(s(1−q)) ; q
)
b′

.(35)

For Re(a) > 0, Re(s) > max(Re(|x|),Re(|y|)), we have a q-analogue of
Erdélyi [7, 4, p. 222]:

1

Γq(a)
Lq

(
ta−1 Υ2

(
b, b′; c

∣∣q;xt, yt))
=

1

sa
Φ1

(
a, b, b′; c

∣∣∣∣q; x

s(1− q)
,

y

s(1− q)

)
.

(36)

For Re(c) > 0, Re(s) > max(Re(|xi|), i = 1, . . . , n), we have a q-analogue
of Erdélyi [7, 5, p. 222] for the Humbert function:

1

Γq(c)
Lq

(
tc−1 Υ2

(⃗
b; c
∣∣∣q; x⃗t)) =

1

sc
(

x⃗
(s(1−q)) ; q

)
b⃗

.(37)

For Re(a) > 0, Re(s) > 0, Re(s) > Re(|x|), we have a q-analogue of Erdélyi
[7, 6, p. 222]:

1

Γq(a)
Lq

(
ta−1 Υ3 (b; c|q; tx, y)

)
=

1

sa
Ξ2

(
a, b; c

∣∣∣∣q; x

s(1− q)
, y

)
.(38)

For Re(b′) > 0, Re(s) > 0, Re(s) > Re(|y|), we have a q-analogue of Erdélyi
[7, 7, p. 223]:

1

Γq(b′)
Lq

(
tb

′−1 Υ3 (b; c|q;x, yt)
)
=

1

sb′
Υ2

(
b, b′; c

∣∣∣∣q;x, y

s(1− q)

)
.(39)

For Re(a) > 0, Re(s) > 0, Re(s) >
√
y

1−q , we have a q-analogue of Erdélyi
[7, 8, p. 223]:

1

Γq(2a)
Lq

(
t2a−1 Υ3

(
b; c
∣∣q;x, yt2))

=
1

s2a
Φ1:4;1
1:3;0

[
∞ :
c :

△(q; 2; 2a)
3∞

; b
; ·

∣∣∣∣q; y

(s(1− q))2
, x

]
.

(40)

For Re(c) > 0, Re(s) > 0, Re(s) > Re(|x|), we have a q-analogue of Erdélyi
[7, 9, p. 223]:

1

Γq(c)
Lq

(
tc−1 Υ3(b; c

∣∣q;xt, yt)) = 1

sc
(

x
(s(1−q)) ; q

)
b

Eq

(
y

s(1− q)2

)
.(41)
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For Re(a) > 0, Re(s) > 0, Re(s) > max(Re(|x|),Re(|y|)), we have a q-
analogue of Erdélyi [7, 10, p. 223]:

1

Γq(a)
Lq

(
ta−1 Υ3 (b; c|q;xt, yt)

)
=

1

sa
Υ1

(
a, b; c

∣∣∣∣q; x

s(1− q)
,

y

s(1− q)

)
.

(42)

For Re(b′) > 0, Re(s) > 0, Re(s) > Re(|y|), we have a q-analogue of Erdélyi
[7, 11, p. 223]:

1

Γq(b′)
Lq

(
tb

′−1 Ψ1

(
a, b; c, c′

∣∣q;x, yt))
=

1

sb′
Φ2

(
a, b, b′; c, c′

∣∣∣∣q;x, y

s(1− q)

)
.

(43)

For Re(b) > 0, Re(s) > 0, Re(s) > Re(|x|), we have a q-analogue of Erdélyi
[7, 12, p. 223]:

1

Γq(b)
Lq

(
tb−1 Ψ2

(
a; c, c′

∣∣q;x, yt))
=

1

sb′
Ψ1

(
a, b; c, c′

∣∣∣∣q; x

s(1− q)
, y

)
.

(44)

For Re(a) > 0, Re(s) > max(Re(|x|),Re(|y|)), we have a q-analogue of
Erdélyi [7, 13, p. 223]:

1

Γq(a)
Lq

(
ta−1 Ψ2

(
b; c, c′

∣∣q;xt, yt))
=

1

sa
Φ4

(
a, b; c, c′

∣∣∣∣q; x

s(1− q)
,

y

s(1− q)

)
.

(45)

For Re(b′) > 0, Re(s) > 0, Re(s) > Re(|y|), we have a q-analogue of Erdélyi
[7, 14, p. 223]:

1

Γq(b′)
Lq

(
tb

′−1Ξ1

(
a, a′; b; c

∣∣q;x, yt))
=

1

sb′
Φ3

(
a, a′, b, b′; c

∣∣∣∣q;x, y

s(1− q)

)
.

(46)

For Re(a′) > 0, Re(s) > 0, Re(s) > Re(|y|), we have a q-analogue of Erdélyi
[7, 15, p. 223]:

1

Γq(a′)
Lq

(
ta

′−1Ξ2 (a, b; c|q;x, yt)
)

=
1

sa′
Ξ1

(
a, a′; b; c

∣∣∣∣q;x, y

s(1− q)

)
.

(47)



New q-Laplace transform with examples 49

For Re(a′) > 0, Re(s) > 0, Re(s) > 2Re(
√
y), we have a q-analogue of

Erdélyi [7, 16, p. 223]:

1

Γq(2a′)
Lq

(
t2a

′−1Ξ2

(
a, b; c

∣∣q;x, yt2))
=

1

s2a′
Φ1:2;4
1:1;3

[
∞ :
c :

a, b;
∞;

△(q; 2; 2a′)
3∞

∣∣∣∣q;x, y

(s(1− q))2

]
.

(48)

Proof. First we prove (40). The left hand side equals

1

Γq(2a)

∫ 1
s(1−q)

0
t2a−1E 1

q
(−qst)

∞∑
m1,m2=0

⟨b; q⟩m1x
m1(yt2)m2

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1+m2

dq(t)

by(16)
=

1

s2a

∞∑
m1,m2=0

Γq

[
2a+ 2m2

2a

]
⟨b; q⟩m1x

m1

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1+m2

( y

s2

)m2

by[8, (1.46)]
=

1

s2a

∞∑
m1,m2=0

⟨b; q⟩m1⟨2a; q⟩2m2

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1+m2

xm1

(
y

(s(1−q))2

)m2

= RHS.

Then we prove (41). The left hand side equals

1

Γq(c)

∫ 1
s(1−q)

0
tc−1E 1

q
(−qst)

∞∑
m1,m2=0

⟨b; q⟩m1(xt)
m1(yt)m2

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1+m2

dq(t)

by(16)
=

1

sc

∞∑
m1,m2=0

Γq

[
c+m1 +m2

c

]
⟨b; q⟩m1x

m1ym2

⟨1; q⟩m1⟨1; q⟩m2⟨c; q⟩m1+m2s
m1+m2

by[8, (1.46)]
=

1

sc

∞∑
m2=0

(
y

s(1− q)

)m2 1

⟨1; q⟩m2

×
∞∑

m1=0

(
x

s(1− q)

)m1 ⟨b; q⟩m1

⟨1; q⟩m1

by[8, (7.27)]
= RHS. □

5. Conclusion

The table of q-Laplace transforms enables us to quickly find out which
formula to be used. We are thus ready to solve inhomogenous q-difference
equations, with right hand side for instance a delta function. The solutions
will be the sum of the homogenous and the inhomogenous solutions like for
differential equations. In the next paper we will solve the corresponding
system of q-difference equations.

6. Discussion

It was not possible to find a q-analogue of the transform for f(t−a)H(t−a),
since an additive substitution in q-integrals is not allowed. In the next step
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we could consider multiple q-Laplace transforms, which would then be q-
analogues of well-known multiple Laplace transforms. The proof of the q-
analogue of the Bromwich integral would require the corresponding Cauchy
integral formula. We shall, however, try to discuss inversion problems in
certain special cases in the next paper.
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Nachr. 2 (1949), 4–34.



New q-Laplace transform with examples 51
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