The Legendre-like operators on tuples of Lagrangians and functions

Miroslav Doupovec, Jan Kurek, Włodzimierz Mikulski

Abstract


Let \(Y\) be a fibred manifold with an \(m\)-dimensional basis \(M\).  We describe all Legendre-like operators \(C\), i.e. natural operators transforming tuples \((\lambda,g)\) of Lagrangians \(\lambda:J^sY\to\bigwedge ^mT^*M\) and functions \(g:M\to\mathbf{R}\) (resp. \(g:Y\to\mathbf{R}\)) into Legendre maps \(C(\lambda,g):J^{s}Y\to S^sTM\otimes V^*Y\otimes\bigwedge^m T^*M\). The most important example of such operators is the Legendre operator  (from the variational calculus) being  the one in question depending only on Lagrangians.

Keywords


Fibred manifolds; Lagrangians; Legendre maps; natural operators; Legendre transformation

Full Text:

PDF

References


Kolar, I., A geometrical version of the higher order Hamiltonian formalism in fibered manifolds, J. Geom. Phys. 1 (1984), 127–137.

Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin–Heidelberg, 1993.

Kurek, J., Mikulski, W. M., The Euler-like operators on tuples of Lagrangians and functions on bases, Ann. Univ. Mariae Curie-Skłodowska Sect. A 73 (2024), 75–86.

Mikulski, W. M., On regular local operators on smooth maps, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62(2) (2015), 69–72.

Mikulski, W. M., On naturality of the Legendre operator, Demonstr. Math 41(4) (2008), 969–973.




DOI: http://dx.doi.org/10.17951/a.2025.79.1.1-12
Date of publication: 2025-07-31 20:53:30
Date of submission: 2025-07-23 19:23:19


Statistics


Total abstract view - 0
Downloads (from 2020-06-17) - PDF - 0

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Miroslav Doupovec, Jan Kurek, Włodzimierz Mikulski