On Leonardo, Leonardo–Lucas and modified Leonardo elliptic quaternions and their matrix representations

Furkan Secgin

Abstract


In this paper, we present a new class of elliptic quaternions that incorporate Leonardo, Leonardo–Lucas and modified Leonardo numbers into their components. We explore some fundamental properties associated with these numbers. In particular, we obtain recurrence relations, generating function, Binet formula of these sequences and by using Binet formula we derive Vajda, Cassini, Catalan and d’Ocagne identities. Lastly, we investigate two different matrix representations of these numbers.

Keywords


Quaternions; elliptic quaternions; Leonardo numbers; matrix representation

Full Text:

PDF

References


Alp, Y., Kocer, E. G., Some properties of Leonardo numbers. Konuralp J. Math. 9(1) (2021), 183–189.

Catarino, P., Borges, A., A note on incomplete Leonardo numbers, Integers 20 (2020), Paper No. A43, 7 pp.

Catarino, P. M., Borges, A., On Leonardo numbers, Acta Math. Univ. Comenian. (N.S.) 89(1) (2019), 75–86.

Colakoglu, H. B., Ozdemir, M., Generalized elliptical quaternions with some applications. Turkish J. Math. 47(1) (2023), 351–371.

Dijkstra, E., Archive: Fibonacci numbers and Leonardo numbers (ewd 797), 1981.

Isbilir, Z., Akyigit, M., Tosun, M., Pauli–Leonardo quaternions, Notes on Number Theory and Discrete Mathematics 29(1) (2023), 1–16.

Karatas, A., On complex Leonardo numbers, Notes on Number Theory and Discrete Mathematics 28(3) (2022), 458–465.

Kuhapatanakul, K., Ruankong, P., On generalized Leonardo p-numbers, J. Integer Seq. 27(4) (2024), Art. 24.4.6, 10 pp.

Mangueira, M., Vieira, R., Alves, F., Catarino, P., Leonardo’s bivariate and complex polynomials, Notes on Number Theory and Discrete Mathematics 28(1) (2022), 115–123.

Ozdemir, M., An alternative approach to elliptical motion, Adv. Appl. Clifford Algebr. 26 (2016), 279–304.

Prasad, K., Mahato, H., Kumari, M., Mohanty, R., On the generalized Leonardo Pisano octonions, Nat. Acad. Sci. Lett. 47(5) (2024), 579–585.

Prasad, K., Mohanty, R., Kumari, M., Mahato, H., Some new families of generalized k-Leonardo and Gaussian Leonardo numbers, Commun. Comb. Optim. 9(3) (2024), 539–553.

Rahebi, M., Yayli, Y., Elliptic quaternion and elliptic linear interpolation, Politeknik Dergisi 27(3) (2024), 1189–1195.

Soykan, Y., Generalized Leonardo numbers, Journal of Progressive Research in Mathematics 18(4) (2021), 58–84.

Tan, E., Yaman, T., Gok, I., On Fibonacci and Lucas elliptic quaternions, 2024, to appear.

Vieira, R. P. M., Alves, F. R. V., Catarino, P. M. M. C., Relacoes bidimensionaise identidades da sequencia de Leonardo, Revista Sergipana de Matematica e Educacao Matemaica 4(2) (2019), 156–173.

Vieira, R. P. M., dos Santos Mangueira, M. C., Alves, F. R. V., Catarino, P. M. M. C., A forma matricial dos numeros de Leonardo, Ciencia e natura 42 (2020), e100–e100.




DOI: http://dx.doi.org/10.17951/a.2025.79.1.85-103
Date of publication: 2025-07-31 20:53:36
Date of submission: 2025-07-24 10:20:46


Statistics


Total abstract view - 0
Downloads (from 2020-06-17) - PDF - 0

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Furkan Secgin