Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 04:22:31

éw‘“;"ﬁ/s&lr Annales UMCS

£ 0% % Annales UMCS Informatica Al 2 (2004) 173-182 Informatica

R AR Lublin-Polonia
Res Sectio Al

http://www.annales.umcs.lublin.pl/

Validation of reactive embedded systems against
specification requirements

Joanna Strug, Stanistaw Deniziak, Krzysztof Sapiecha”

Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland

Abstract
In this paper a method of automatic generation of test scenarios for verification of specification
requirements (temporal and functional) for reactive embedded systems is presented.

1. Introduction

The aim of design-validation is to check whether or not specification
requirements (functional and temporal) imposed on a system are met [1,2].

Most of recently proposed techniques of design-validation use formal
verification methods, like model checking [1,3] and theorem proving [4]. These
methods typically use automata based models [4] of a system and temporal logic
(TL) [5] in order to express the required temporal properties. However, temporal
properties, which may be expressed in this way are limited to safety and liveness
[6,3]. Some extensions of TL can capture time properties more precisely. In
Timed CTL [1,2] time-bounded versions of each time operators are introduced.
Real-time logic (RTL) [6] includes special predicates, which relate events that
happen in a system with the time they occur. The duration calculus [7] add
operators to access intervals. On the basis of these extensions it is possible to
verify certain design properties including temporal requirements.

In [8] there are proposed two proof methodologies corresponding to two
specification styles of real-time properties. A system is modeled as a real-time
transitional one. Time properties are expressed in time-bounded logic or by
explicit reference to a current time through a special clock variable. A deductive
proof is then conducted to show the consistency with the specification.

The formal verification methods are limited to small and medium size designs
or are restricted to some subproblems. For large systems, simulation-based
validation techniques are still most popular [9]. The main problem here is to

* Corresponding author: e-mail address: pesapiec@cyf-kr.edu.pl

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 04:22:31

174 Joanna Strug, Stanistaw Deniziak ...

develop a set of input stimuli giving high validation accuracy. Some efficient
methods of automatic generation of test scenarios to validate a system against
functional requirements have already been developed [10,11]. However, there
are no such satisfactory methods as far as temporal requirements are concerned.
Moreover there are no efficient methods for validation of both types of
specification requirements.

The aim of this paper is to present a method of automatic generation of test
scenarios for validation of embedded systems [12] against temporal and
functional requirements. Test scenarios are derived from system requirements
and are then applied to a model or a prototype of the system. Each test scenario
consists of verification sequence (sequence of stimuli to be applied to system
inputs) and the expected responses which are then compared with those
generated by the system while simulating. Main features of the proposed method
are described in sections 2 and 3. Section 4 includes short comparison,
considerations and conclusions.

2. Embedded system model

It is assumed that a designer starts with gathering functional and temporal
requirements (temporal constraints) for a system. These requirements are usually
described in a textual form, but it is assumed that each of the requirements has a
unique identifier. Manual translation to more formal specification (e.g. SCR
[13]) is then performed and a suitable model of the functional requirements is
automatically developed (as described in [10]).

A model of an embedded system S is defined as a couple S = (7, G), where T
is a set of tasks' that should be executed by the system and G = (V, E) is a
directed graph representing its functional requirements. Each functional
requirement or its separated part (if any) and each task have unique identifiers
denoted by RId and Tld correspondingly. Execution time of a task is fixed and
data-independent. ¥ is a finite set of nodes. Nodes belonging to V' correspond to
stable states of the system. Values of state variables determine the state of S. A
single node denoted by v, distinguished from V represents initial state of the
system. £ is a set of edges. Each edge belonging to E represents transition
between a given pair of nodes. Edges are labeled with stimuli, responses (if any
is generated), requirements and tasks identifiers.

Graph G can be a cyclic or an acyclic one. It depends on the system. Multiple
edges are also enabled (in order to represent different causes of transition
between the same states).

Safety Injection System (SIS) for nuclear reactor [10] serves as an example
for our method. Functional requirements for the system are given in Table 1.
Each of the requirements is supplemented with identifiers of tasks which are

! Tasks are extracted from a task graph [14,15].

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 04:22:31

Validation of reactive embedded systems against ... 175

executed to meet the given requirement or its part. On this basis a model of the
system is developed (Figure 1). The state variables and their admissible values
are: WP (P — permitted water pressure, 7L — water pressure below the threshold
LOW), Overridden (T — if Block has been asserted and F' — if Reset has been
asserted), TrefCnt (asserts counting of time, may have the values of 0, 1 and 2)
and SJ (Off — if the valve is closed and On — if the valve is opened).

Table 1. Functional requirements for SIS

RId Description
RI The system shall assert Safetylnjection when WaterPres falls below LOW (opening a
valve T1).

(a) A The system shall be blocked (blocking T3) in response to Block being asserted while
Reset is not asserted and WaterPres is below LOW, and shall remain blocked until either

R2 (c) Reset is asserted or (b) WaterPres crosses LOW from a larger to smaller value
(unblocking T4 and setting TrefCnt to zero T6).
R3 Once SafetyInjection is asserted, it shall remain asserted until the system becomes blocked

or WaterPres becomes greater than or equal to LOW (closing a valve T2).
When the system is blocked and WaterPres is less than LOW, the system shall (a) start

R4 | counting (increasing TrefCnt T5) and (b) automatically unblock (T4 and T6) itself after
the third timing reference event is sensed on input Tref.

WaterPres>=LOW
Reset=On/ WaterPres<LOW/

{T1}/WaterPres<LOW/
SafetyInjection=On

(P.F.0/OFF}

{TL,F,0/ON}

{ T2}/ WaterPres>=LOW/
SafetyInjection=Off,
{T2.T3}/Block=On/
Safetylnjection=0ff
T4, T6} WaterPres>=
Aset=On/
o=On

{TL,T,0/OFF}

{T5}/TRef=2/ {T5}/TRef=1/

{TL,T,1/OFF}

Fig. 1. Functional requirements graph for SIS

It is typical for reactive systems that they interact continuously with the
environment in which they operate. Hence, constraints imposed on the system by
the environment (external requirements) must be considered. These constraints
include input signals frequency, time separation between signals occurrences on
different inputs or inputs and outputs, etc [14].

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 04:22:31

176 Joanna Strug, Stanistaw Deniziak ...

There may also exist time constraints expressing desired time relation
between a system and its environment and between different tasks (some tasks
or devices may require specific timing). In order to represent these constraints
(internal requirements) minimal and maximal delays may be introduced. They
define the amount of time allowed for execution of particular task(s). The
minimal time delay determines the first possible moment of the time at which
the execution of specified task(s) may be completed, whereas maximal time
delay determines the time at which it must be completed. A temporal constraint
is violated if the execution of task(s) is completed to early or to late. A unique
Constraint Identifier (CId) is associated with each temporal requirement.

Temporal requirements imposed on SIS are given in Table 2 where: @A
denotes A as an initial event for execution of tasks, ’ and ” indicate paths
associated with different tasks and () and {} denote constraint associated with a
particular path and marked subsets of nodes respectively. Requirement described
in the second row of Table 2 belong to the requirements associated with a group
of paths. The remaining requirements are associated with particular tasks.

Table 2. Temporal requirements for SIS

Cid | Toin | tmax Description Notation
Time required for opening a valve (SJ=On) when water
1 0 1 pressure falls below the allowed threshold (@WaterPres < (1,2)
LOW).
Time required for transition to a proper state (WP=P) when (2,3,4,5)=>
2 0 | 05 water pressure rise above the allowed threshold = 1’
(@WaterPres >= LOW). i
. . . (3.2),
Time required for manual unblocking the system and to (42)
3 0 2 | open the valve (@Reset=On, SJ=0On) when water pressure is (5’ 2)’

lower than the allowed threshold (WP=TL).

Time required for closing a valve (SJ=Off) when Block is
4 0 1,5 | asserted (@Block=On) and water pressure is lower than the 2,3)
threshold (WP=TL).

Time required for automatic unblocking and to open a valve
5 0 3,0 (SJ=0On) when the system have been blocked and three (3,2)”
timing references have been sensed on input Tref.

3. Verification sequences

A solution applied here is based on the concept of critical paths. A path S,
from node v; to node v; in graph G is defined as a sequence of edges
<e,i+1€i+11+2 ---€.1,;>, Where egi; belonging to £ denotes an edge between
nodes v, v+; belonging to V. Each path, to which a temporal constraint is
associated, is called critical path [16,17].

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 04:22:31

Validation of reactive embedded systems against ... 177

Generation of verification sequences for all critical paths results in exhaustive
verification of all temporal constraints, thus reductions are necessary. In our
approach a reduced set of critical paths is selected and then evaluated to check if
the paths cover also all functional requirements (paths should include edges
labeled with all RId).The set is then updated with one-edge paths for missing R/d
if necessary.

Each critical path determines a subset of tasks, which should be executed in a
time given by a temporal constraint. A constraint may be imposed on a path
representing given (in specification) subset of tasks. This situation allows
existence of multiple paths (between different pairs of nodes), but all of them
represent the same subset of tasks. An example of such a constraint is presented
in Figure 2. For task 77 three critical paths (<e;,>, <e;,> and <es,>) are
determined.

T1

Fig. 3. Constraint imposed on transition between nodes 2 and 4

A constraint may be also imposed on a transition between given states of the
system (referred to as source and target nodes respectively). Hence all paths
between these nodes are critical ones and may represent different subsets of
tasks. Such a situation is shown in Figure 3. Paths <e,;e;.>, <e,ses,> and
<e, 4> are all critical ones.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 04:22:31

178 Joanna Strug, Stanistaw Deniziak ...

Design-validation based on exhaustive verification sequences is always valid.
On the contrary, design-validation based on reduced verification sequences
might lead to optimistic conclusions.

The goal of our work is to generate a reduced but still comprehensive set of
test scenarios for a system. To this aim some assumptions are taken. These are
the following:

1. each temporal constraint requires at least one verification sequence to be

verified, but all tasks associated with any constraint have to be checked,

2. execution time of each of the tasks belonging to T is fixed and it does not
depend upon the way the task is started. Such assumption does not hold for
general purpose systems but it usually holds for embedded ones. However,
it is not true for tasks, whose execution time is data dependent. Then the
validation results are only approximated ones, but they can be improved if
we assume WCET (Worst Case Execution Time) for maximum delays
or/and BCET (Best Case Execution Time) for minimal delays.

On the basis of these assumptions, the number of paths to be generated and
verified can be considerably limited. However, for some systems this might be
too optimistic. Temporal correctness of execution of tasks is checked rather than
of a particular critical path. Nevertheless, there is at least one verification
sequence covering each temporal constraint in the generated set.

The selection of critical paths to be generated and combined is based on
comparison of subsets of tasks associated with these paths. Let two critical paths
P and P*, and two sets of tasks 7"and T*, associated with P and P* respectively,
be given. Path P covers P*, if T* is a subset of T.

In Figure 4 draft and main procedures of the algorithm of generation of test
scenarios are presented.

test_scenarios_generation()

for (each constraint C;q) do
determine source and target nodes;
for (each Ciy) do
if (constraint C;q imposed on tasks) then
chose random pair of nodes;
generate and save a path;
else
generate and save path(s) ;
combine critical paths;
evaluate the set of paths;
if (not all Rid)
update ST;
save test scenarios;

}

Fig. 4. An algorithm of generation of test scenarios

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 04:22:31

Validation of reactive embedded systems against ... 179

At first source and target nodes for possible (not yet generated) paths are
determined. Next, for each constraint paths are selected and generated according
to the following rules:

1. If a constraint is imposed on a subset of tasks then verification of any path
containing these tasks is sufficient (they cover each other). The choice of
the path to be generated is not of primary importance and may be random.
For example, path <e;,> in Figure 2 may be chosen. The remaining paths
associated with the constraint are those rejected. Reductions preformed at
this step are the most effective, because a number of paths may be
significantly limited without their generation.

2. If only source and target nodes are specified, paths are generated and
associated with them subsets of tasks are determined and compared
(covered paths are rejected). The minimal subset of paths associated with a
given constraint consists of paths representing execution of different
subsets of tasks. In Figure 3 path <e,,> representing task 73 and
<e, s e;4> representing tasks 7/ and 72 belong to the minimal set for the
constraint. Path <e, s5,e5 .~ may be dropped as a covered one.

The execution of this step produces a reduced set of critical paths. It is the
smallest set that includes critical paths representing all different subsets of tasks.
Two path generation algorithms are used. The first one searches for all possible
paths between specified nodes. The second one makes it possible to determine
edges belonging to a path if tasks to be executed are specified. Both algorithms
use similar techniques. During the generation of critical paths a Paths Tree (PT)
is built and accepted nodes are added to it. The acceptance functions prevent us
from exploring already visited nodes. Combination of the generated paths allows
for further reductions. Minimal coverage of generated paths is reached in a
similar way as in [10], e.g. a Scenarios Tree (S7) is built and paths are added to
it. In the next step the set is evaluated to determine whether all functional
requirements are covered by paths from this set or not. It relies on checking if all
RId are represented by labels of edges in ST. In the case that not all RId have
been found, a procedure similar to that in [10] is started. It explores the state
space of G and adds one-edge path labeled with missing RId to ST. The
algorithm of test scenarios generation ends after saving stimuli and responses
labeling edges of ST.

In Table 3 the final result of the application of the algorithm to SIS is given
("9 Sii (i denotes a critical path; Path Identifier (PId) is introduced to
distinguish paths generated for CId time constraint). At the beginning ten critical
paths were founded. Next, four of them were rejected during the generation
process and another one during combination of the remaining paths. Because
these paths did not cover the R2c requirement one extra edge was added to
satisfy this requirement. Finally, a set of four test scenarios was produced

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 04:22:31

180 Joanna Strug, Stanistaw Deniziak ...

(Table 3). Experimentally calculated verification quality Oy 2[17] for verification
sequences from this set equals 1. It means that all errors, temporal as well as
functional, randomly injected into the model were correctly detected.

Table 3. Reduced set of test scenarios for SIS

No Test scenarios (Pid)Sst(Cid)
| WaterPres < LOW/SafetyInjection = On 1S1,2(1),
WaterPres >=LOW/SafetyInjection = Off 282,1(2)
WaterPres < LOW/SafetyInjection = On 1S1,2(1),
Block = On/Safetylnjection = Off 1S2,3(4),
2
Tref/
WaterPres >= LOW/ 354,1(2),
WaterPres < LOW/SafetyInjection = On 1S1,2(1),
3 Block = On/SafetylInjection = Off 1S2,3(4),
Reset = On/ SafetyInjection = On 1S3,2(3),
WaterPres < LOW/SafetyInjection = On 1S1,2(1),
Block = On/SafetyInjection = Off 1S2,3(4),
4 Tref/
Tref/
Tref /SafetyInjection = On 1S5,2(5)

The exhaustive set of test scenarios used for experimental evaluation of the
reduced one consists of eight scenarios. The total length of all verification
sequences belonging to the exhaustive set equals 31 stimuli, whereas the length
of verification sequences in the reduced set is equal to only 14 stimuli.

4. Conclusions

Actually an embedded system designer may choose one of the following
approaches to verification specification requirements: time budget-based [14],
formal [1-4,8] and simulation-based verification [10,11].

Some knowledge about time budgets for execution of tasks can help the
designer to keep correctness of the system under control throughout the whole
design flow. Though, it does not guarantee that any design error will occur.
Moreover, usually calculation really true budgets is not easy.

Formal verification techniques require the system specification requirements
to be described in a form of logical expressions (formulas). It is assumed that the
PRES+ model [1,2] is generated from an implementation of a system and it
reflects exactly time relations in the real system. Such model may represent data
and control flow, as well as concurrency. This is an advantage with respect to

% Verification quality (Qy) is defined as follows: Qv =1-Co/C, where Cy is the number of
optimistic verification conclusions (GO instead of NOGO), and C is the total number of
verifications [17].

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 04:22:31

Validation of reactive embedded systems against ... 181

other approaches. But to start the verification one requires an access to exact
execution times for tasks and thus may be conducted very late in the design
flow.

Test scenarios generation for simulation-based verification does not require
any time information and can be performed very early in the design process.
Test scenarios can be reused for validation of the system (or its model) on
multiple levels of design description and multiple design alternatives.

In the paper a simulation-based method for validation of embedded systems
against specification requirements is presented. Test scenarios obtained with the
help of the method can be used for verification both, functional and temporal
requirements. The method is easy to use in practice and verification sequences
are short. Automating test scenarios generation makes the method fast and
flexible.

Our solution is inspired by the method presented in [10] which addresses only
the problem of functional validation. We extended this method with the
possibility of verification of temporal requirements. Distinguishing of tasks
gives us an insight into internal behavior of the system and helps for appropriate
selection of paths to be verified.

Although, the method should usually provide good validation results there are
some problems to be remembered. Reductions which are performed to get a set
of paths and of test scenarios assume rejection of covered paths. In some
situations (covered path represents fewer tasks than the covering one) it may
lead to undetected violation of a temporal constraint, because the covering paths
can compensate for the time. It must be also taken into consideration that if
execution time of each task is not constant then the verification sequences are
only rough ones.

References

[1] Cortes L.A., Eles P., Peng Z., Formal Coverification of Embedded Systems using Model
Checking, Proc. EUROMICRO, (2000).

[2] Cortes L.A., Eles P., Peng Z., Verification of Embedded Systems using a Petri Net based
Representation, Proc. of the 13th ISSS, (2000).

[3] Varea M., Al-Hashimi B., Dual Transitions Petri Net based Modelling Technique for
Embedded Systems Specification, Proc. of the 4th DATE Conference, (2001).

[4] Alur R., Henzinger T.A., Ho P.-H., Automatic Symbolic Verification of Embedded Systems,
IEEE Trans. Software Engineering, (1996).

[5] Bellini P., Mattolini R., Nesi P., Temporal Logics for Real-Time System Specification, ACM
Computer Surveys, (2000).

[6] Edwards S., Lavagno L., Lee E.A., Sangiovanni-Vincentelli A., Design of Embedded
Systems: Formal Models, Validation, and Synthesis, Proc. of the IEEE, (1997).

[71 Chaochen Z., Duration calculus, a logical approach to real-time system, Lecture Notes in
Computer Science, (1999).

[8] Henzinger T., Manna Z., Pnueli A., Temporal Proof Methodologies for Timed Transitional
Systems, Proc. of the 18th ACM Symposium on Principles of Programming Languages,
(1991).

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 04:22:31

182 Joanna Strug, Stanistaw Deniziak ...

[9] Ziegenbein D., Jersak M., Richter K., Emst R., Breaking Down Complexity for Reliable
System-Level Timing Validation, Proc. of the 9th IEEE Electronic Design Process Workshop,
(2002).

[10] Cunning S., Rozenblit J.W., Automating Test Case Generation for Requirements Specification
for Real-time Embedded Systems, Proc. of the 1999 IEEE SMC’99, (1999).

[11] Lajolo M., Lavagno L., Rebaudengo M., Automatic Test Bench Generation for Simulation-
based Validation, Proc. of the 8th CODES, (2000).

[12] Turley J., Embedded Processors by the Numbers, Embedded Systems Programming, (1999).

[13] Heitmeyer, C., Kirby, J., Labaw, B., The SCR Method for Formally Specifying, Verifying and
Validating Requirements: Tool Support, Proc. of the International Conference on Software
Engineering, (1997).

[14] Dasdan A., Ramanathan D., Gupta R.K., Rate Derivation and Its Applications to Reactive,
Real-time Embedded Systems, Proc. of the 35th Design Automation Conf., (1998).

[15] Dick R.P., Rhodes D.L., Wolf W., TGFF: Task Graphs for Free, Proc. of the Int Workshop
Hardware/Software Codesign CODES/CASHE’98, (1998).

[16] Strug J., Deniziak S., Sapiecha K., An Application of Test Scenarios for Verification of Time
Constraints in Embedded Systems, RUC’2003, (2003), in Polish.

[17] Strug J., Deniziak S., Sapiecha K., Validation of Reactive Embedded Systems against
Temporal Requirements, ECBS, 2004, Brno, accepted for presentation.

http://www.tcpdf.org

