
Annales UMCS Informatica AI 2 (2004) 341-349
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI

http://www.annales.umcs.lublin.pl/

RT-level fast fault simulator

Stanisław Deniziak, Krzysztof Sapiecha∗

Department of Computer Engineering, Cracow University of Technology,

Warszawska 24, 31-155 Kraków, Poland

Abstract
In this paper a new fast fault simulation technique is presented for calculation of fault

propagation through HLPs (High Level Primitives). ROTDDs (Reduced Ordered Ternary Decision
Diagrams) are used to describe HLP modules. The technique is implemented in the HTDD RT-
level fault simulator. The simulator is evaluated with some ITC99 benchmarks. A hypothesis is
proved that a test set coverage of physical failures can be anticipated with high accuracy when
RTL fault model takes into account optimization strategies that are used in CAE system applied.

1. Introduction
Recent developments in the area of deep-submicron technology have

challenged integrated circuit (IC) test methods as never before [1]. The
increasing complexity of systems being designed makes test development more
time-consuming. Moreover, nanometer technology has introduced new problems
such as new types of defects or higher data rates. To reduce manufacturing cost
and time-to-market, efficient fault detection and location should be used. One of
the most essential tasks in fault diagnosis is fault simulation [2].

Current Computer-Aided Engineering (CAE) tools must address the needs for
new generation of ICs e.g., systems-on-a-chip (SOC). Recent works in this area
have increased emphasis on new design techniques such as high-level synthesis,
behavioral synthesis, design reuse and IP-based design. For this reason, new
ATPG tools that reflect new design flows should be developed, especially tools
working at higher level of abstraction than gate-level.

Several approaches for High-Level Automatic Test Pattern Generation
(HLATPG) have already been proposed. In Artist [3,4] a quality of generated
test sequence is measured in terms of the number of blocks of statements in
source description of a system activated during its true-value RT-level
simulation. Artist accepts synthesizable functional register transfer level (RTL)

∗ Corresponding author: e-mail address: pesapiec@cyf-kr.edu.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 16:09:50

UM
CS

Stanisław Deniziak, Krzysztof Sapiecha 342

descriptions in VHDL. A genetic algorithm is used for computing test
sequences. Fault coverage (FC) of test sequences generated by Artist is generally
comparable with that obtained with the help of gate-level ATPG. But these
sequences are significantly longer. HTest [5] uses an ADD (Assignment
Decision Diagram) representation of functional RTL descriptions. Test
generation is based on symbolic computations based on RTL algebra. HTest
generates test sequences comparable or better than Arists or even gate-level
ATPG methods. Moreover, it is significantly faster (up to 4 orders of
magnitude). However, in comparison with other algorithms, test sequences are
longer. This is due to the fact that HTest does not use fault simulation to find
faults already detected and no fault dropping can be performed to reduce test
sequence length. In BEHATE [6] behavioral fault-free and faulty VHDL
descriptions are translated into BDD (Binary Decision Diagram) representation.
Test generation is based on comparison of the fault-free and faulty BDDs. In this
algorithm also no high-level fault simulation is used.

Generally, recently developed HLATPG algorithms usually generate test
sequences giving high stuck-at fault coverage, when simulated at the gate-level
[3,5]. However, in some cases low quality test sequences are obtained despite
high value of the high-level test metric. Such divergence indicates the lack of
direct relationship between the high-level metrics and the gate-level stuck-at
fault model.

Most commonly used high-level test metrics are based on observability basic
block coverage [3] or observability statement coverage [7]. These metrics
indicate the percentage of statements (or RTL blocks) that are activated by a
given test pattern. It has been experimentally proved that fault models based
only on statement coverage are insufficient [8] and more sophisticated fault
model including bit coverage and condition coverage [9] should be used. The
main problem, which makes computing high-level fault coverage (HLFC)
impossible for more advanced fault models is the lack of efficient high-level
fault simulator [3]. Hence, developing an efficient high level fault simulation
method is a key problem which should be solved to find efficient HLATPG [10].

In this paper a new deductive bit-parallel fault simulation technique is
presented for calculation of fault propagation through High Level Primitives
(HLPs). ROTDDs (Reduced Ordered Ternary Decision Diagrams) are used to
describe HLP modules. The technique is implemented in the HTDD RT-level
fault simulator [11]. The simulator is evaluated with the help of some ITC99
benchmarks [4]. Besides high efficiency (in comparison with existing high–level
fault simulators), it shows high accuracy (in terms of fault coverage) when RTL
fault model takes into account optimization strategies that are used in CAE
system applied.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 16:09:50

UM
CS

 RT-level fast fault simulator 343

2. High-level fault simulation
In the past, research concerning fast fault simulation methods was primarily

concerned with sequential algorithms based on the architectural descriptions on
the gate-level and adopting a single stuck-at fault model. Main directions in
developing fast fault simulators have been the following:

1. acceleration of classic algorithms e.g. bit-parallel one: this can be achieved
with reducing the number of simulated faults [12] or by using static and
dynamic fault grouping [13],

2. parallel processing: this can be done thanks to fault partitioning or circuit
partitioning [14]. Efficient synchronization and communication between
parallel processes is the main problem in those techniques,

3. hierarchical fault simulation: in this technique some parts of the system are
simulated on the gate-level while others on RT-level [15]. Gate-level fault
simulation is performed only for the modules with internal faults (gate-
level faults) for which there are no equivalent faults on module pins.

High-level fault simulators should accept descriptions of a system
architecture consisting of HLP, like multiplexers, adders, registers, ALUs, etc.,
or, in the case of system level fault simulators, more complex modules like
processors, controllers, memories and dedicated processing elements. The
function of HLPs should be well defined while their gate-level structure may be
not known. RT-level fault simulation can be applied for RT-level test generation,
for optimizing DFT (Design For Testability) with full or partial scan path, and
for testability analysis during behavioral synthesis (e.g., when testability is taken
into consideration as a quality measure).

RT-level fault simulation seems to be the most appropriate for HLATPG
conforming to new trends in CAE. Moreover, for very large systems gate-level
fault simulation can not be performed due to long runtime or large memory
requirements. For such systems RT-level fault simulation may be the only
alternative for estimation of quality of tests generated using HLATPG.

Architectural fault simulators usually consider only stuck-at faults of all
module inputs and outputs (the so called module-level faults). One of the faults
is equivalent to many internal faults. A technique of fault effects propagation can
be used here [15]. However, for functional descriptions usually stuck-at fault
model is not sufficient. In such cases some additional functional or behavioral
faults are defined. Examples of functional faults are as follows [16]:

– stuck-at-then (stuck-at-else): this is a fault where the set of statements
under the then (else) clause of an if statement is always executed
regardless of the value of its condition expression,

– dead-clause: this is a fault where a clause of a case statement is selected,
but the set of statements under the clause is not executed,

– assignment control fault: this is a fault where the value of the right-hand
expression is not transferred to the left-hand signal,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 16:09:50

UM
CS

Stanisław Deniziak, Krzysztof Sapiecha 344

– micro-operation fault: this is a fault where an operator in an expression is
faulted to another one,

– behavioral stuck-at: this is a stuck-at fault taking into consideration also so
called virtual signals, i.e. unnamed signals formed by all possible sub-
expressions.

Sometimes fault models for RTL modules are based on the functional
analysis of their gate-level implementations [17]. In this way Clause-CORRUPT
OR and Clause-CORRUPT AND faults for if statement (multiplexer) were
defined. These faults cause that the multiplexer output is ored or anded with one
of its inputs. Similar fault models were defined for adders and ALUs.

Existing RT-level fault simulation methods are based on the commercial
HDL simulators [18,19]. Faults are injected into the source description of a
system and simulation is repeated for each fault from a fault list. Such an
approach is very time consuming. Fault simulation, even for small circuits
consisting of some hundreds of gates (about 100 RTL-VHDL lines), lasts
hundreds or thousands seconds for 500 random tests [18].

3. TDD-based bit-parallel deductive fault simulation for RT modules

One of the most efficient algorithms of fault simulation for the gate-level is
the bit-parallel one. It is fast and can be easily implemented with small memory
requirements. But it is difficult to apply this algorithm for higher levels of
abstraction e.g. for RT-level. For this purpose the deductive fault simulation is
much more convenient.

In the HTDD fault simulator ROTDDs are used to describe HLP modules
(Figure 1). A VHDL functional description is translated into corresponding RT-
level architecture (e.g., each if statement is replaced with a multiplexer). A new
deductive bit-parallel fault simulation technique is applied for calculation fault
propagation through HLPs. In Table 1, the method of calculation of fault lists
propagated from inputs to the output O of a HLP is given.

a)

a

b b

ci ci ci ci

x

x x

 0 x 1 1 x 0 1 x 0 0 x 1
 b)

a

b b b

ci ci ci ci ci 0

 0 x x 0 x 1 0 x x x x 1 0 x 1 x x 1

x 1
ci

Fig. 1. ROTDD for outputs y (a) and co (b) of a full-adder

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 16:09:50

UM
CS

 RT-level fast fault simulator 345

Table 1. Procedure of fault propagation for HLP

Propagate(O)
{

 L0 (O)= [0..0];
 Lx (O)= [0..0];
 L1 (O)= [0..0];
 EvaluateLists(I0,[1...1]);

}

where:
 I0 is a first node in TDD (a root),

L0 (l)– fault list for which state of the line l is equal 0
 Lx (l)– fault list for which state of the line l is equal x

L1 (l)– fault list for which state of the line l is equal 1.

 Function EvaluateLists is the following:

EvaluateLists(I, L)
 {
 for(i in {0,x,1}) {
 if(Val(I)==i){
 if(i==0) Mask = !(Lx | L1) ;
 else if(i==x) Mask = !(L0 | L1);
 else Mask = !(Lx | L0);
 L' = L & Mask;
 }
 else L'=L & Li(I);
 if(L'!=[0..0])
 if(Node(ei(I))==leaf and Val(Node(ei(I)))!=Val(O)) LVal(Node(ei(I)))

(O)+=L';
 else EvaluateLists(Node(ei(I)), L');
 }
}

where: Val(I) – state of the line I in the fault free circuit,

 Node(ei(I)) - returns node ending edge corresponding to the value i and
starting from the
 node I (leaf means that edge ends with leaf).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 16:09:50

UM
CS

Stanisław Deniziak, Krzysztof Sapiecha 346

The following fault model was adopted in the HTDD fault simulator:
– stuck-at-0 and stuck-at-1 faults for all signals and variables in a source

description,
– stuck-at-then and stuck-at-else faults for all if statements,
– selection faults in case statements.
The last two groups of faults correspond to stuck-at faults for selection inputs

of corresponding multiplexers. Static and dynamic fault reduction (Figure 2) is
used whenever it is possible. More information can be found in literature [11].

4. Experimental results

The HTDD RT-level fault simulator [11] was used for verifying the
hypothesis that the HLFC evaluated using RT-level fault simulation can be used
for estimation of FC for gate-level [4]. The experimental results obtained for
RT-level were compared to those obtained for the gate-level for the same test
sets. For this purpose a standard set of ITC99 RT-level benchmarks was used
[4]. Test sequences were generated using RAGE77 [20], the RT-level ATPG
system based on genetic algorithm. Gate-level FC was evaluated using Hope
fault simulator [12] with the fault model built in this simulator (a collapsed set of
all single stuck-at faults). All computations were done using 450 MHz PC.
Memory requirements and CPU time (less than 0.05s) were negligible.

Tests

i0 i1 s

y Faults which
propagate to
the output y

Equivalent
and implied
faults

0 0 0 0 y/1,i0/1
0 0 1 0 y/1,i1/1
0 1 0 0 y/1,i0/1,s/1
0 1 1 1 y/0,i1/0,s/0
1 0 0 1 y/0,i0/0,s/1
1 0 1 0 y/1,i1/1,s/0

1 1 0 1 y/0,i0/0
1 1 1 1 y/0,i1/0

i0/0=>y/0
i1/0=>y/0
i0/1=>y/1
i1/1=>y/1

(b)

i0

s

y

i1

(a)

0

0

1

Fig. 2. Static and dynamic fault reduction for a multiplexer (a). Static fault reduction (fault

collapsing) deletes all equivalent and implied faults from simulation (faults y/0 and y/1 for the
multiplexer). Dynamic fault reduction drops faults that do not propagate through the module for a

given test (faults s/0 and i0/1 in this example)

In the first group of experiments none of fault reducing techniques on RT-

level was applied. Figure 3 shows the relationships between HLFC calculated
for RT-level and the gate-level of the benchmark descriptions. HLFC obtained
on RT-level was comparable with that obtained with the help of gate-level fault

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 16:09:50

UM
CS

 RT-level fast fault simulator 347

simulation (e.g., for B02, B04, B06, B09), but for some circuits HLFC is
significantly smaller (e.g., B01, B03). This might be caused by several factors:
an inadequate fault model adopted at the RT-level, no fault collapsing applied,
benchmark characteristics (no resource sharing on RT, for example), or by a test
pattern generation method (RAGE77 is based on statement activation in the
source description during simulation and may activate faults of selected classes
only).

0
10
20
30
40
50
60
70
80
90

B01 B02 B03 B04 B06 B09

R
TL G
at

e

RTL Gate

Fig. 3. RTL-level and gate-level FCs for benchmark circuits

Table 2. FC for B01 benchmark

Test
no.

Test
length

Gate-level FC
(131 collapsed

faults)

RT-level FC
(198 faults)

RT-level FC
(118 collapsed

faults)

RT-level FC, with
resource sharing

(85 collapsed faults)
1 16 85.50 66.67 67.80 92.94
2 10 47.33 27.78 31.36 40.00
3 18 87.78 62.63 62.71 89.41
4 18 92.37 74.75 72.03 94.12
5 18 90.08 74.24 67.80 91.77
6 18 83.21 65.15 68.64 85.88
7 18 93.13 71.72 69.50 94.12
8 38 84.73 73.74 77.97 91.77
9 18 83.21 54.04 55.09 83.53
10 18 84.73 68.69 66.95 88.24
11 18 89.31 68.18 65.25 91.77
12 18 95.42 71.21 70.34 91.77
13 18 72.52 53.03 52.54 76.47

The next group of experiments revealed the reason for this phenomenon. A

representative example is shown in Table 2. Fault collapsing made the
calculations shorter but did not change the relationships between FC on RT and

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 16:09:50

UM
CS

Stanisław Deniziak, Krzysztof Sapiecha 348

gate levels. On the contrary, a better fault model due to resource sharing
appropriate to the strategy of CAE system used (Design Compiler by Synopsys
in this case) did well.

5. Conclusions

In our experiments the HTDD fault simulator was used. In this simulator,
functions of all modules have to be described using TDD. It is possible to
generate such descriptions directly from any standard VHDL or Verilog
specification. It is also possible to define different functional fault models. This
can be done simply by modifying TDD.

A new TDD-based fault simulation technique was developed. It combines
advantages of both bit-parallel and deductive fault simulation. It is fast and easy
for implementation. It can be used for evaluation of high-level fault models [21]
and in simulation based test generation methods [22]. It can also be built into
existing HLATPG algorithms to enable fault dropping.

RT-level fault simulation can not evaluate accurate value of FC, yet. It gives
us only the estimation of FC. Precise value of FC can only be computed using
gate-level or hierarchical fault simulators. Sometimes high-level fault simulators
can not be useful. The lack of information about the structure of some modules
may cause that some physical defects can not be modeled.

However, high-level fault simulation, particularly RT-level one, has many
advantages making this approach very attractive and useful. First, test set
coverage of physical failures can be anticipated with high accuracy when RTL
fault model takes into account optimization strategies that are used in a CAE
system applied. The possibility of simulating modules for which corresponding
gate-level structure is not known, e.g., embedded cores, is guaranteed. HTDD
representation enables evaluation of different high-level fault models and
metrics. Each TDD corresponds to one RTL block or VHDL statement, so block
coverage or statement coverage metrics can be computed simply by tracing TDD
activities. Moreover, all metrics commonly used in software engineering (e.g.
branch coverage, condition coverage, path coverage) [9] can be calculated in the
similar way. Hence, our HTDD fault simulator can also be used for software test
generation. Lower memory requirements and greater speed (simulated systems
have fewer components and hence fewer faults collapsed) can be achieved
through static and dynamic fault reduction. This does not seem to be as efficient
as in the case of gate-level. Information about test quality and about expected
testability of the designed system can be obtained before logic synthesis. If
untestable components of the system can be located in the corresponding
functional description, then the system can be easily redesigned for increased
testability.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 16:09:50

UM
CS

 RT-level fast fault simulator 349

References
[1] Zorian Y., Testing the Monster Chip, IEEE Spectrum, 36(7) (1999) 54.
[2] Levendel Y., Menon P.R., Fault simulation in Fault Tolerant Computing: Theory and

Techniques, ed. D.K.Pradhan, Prentice-Hall, Englewood Cliffs, 1 (1986) 184.
[3] Corno F., Reorda M.S., Squillero G., High-Level Observability for Effective High-Level

ATPG, VLSI Test Symposium, (2000).
[4] Corno F., Reorda M.S., Squillero G., RT-level ITC’99 Benchmarks and First ATPG Results,

IEEE Design & Test of Computers, July-Sept., (2000) 44.
[5] Zhang L., Ghosh I., Hsiao M., Efficient Sequential ATPG for Functional RTL Circuits, Proc.

of the International Test Conference, (2003) 290.
[6] Ferrandi F., Fummi F., Sciuto D., Implicit Test Generation For Behavioral VHDL Models,

Proc. of the International Test Conference, (1988) 587.
[7] Fallah F., Devadas S., Keutzer K, OCCOM – Efficient Computation of Observability-Based

Code Coverage Metrics for Functional Validation, IEEE Transactions On Computer-Aided
Design of Integrated Circuits And Systems, 20(8) (2001) 1003.

[8] Goloubeva O., Sonza Reorda M., Violante M., Experimental Analysis of Fault Models For
Behavioral-Level Test Generation, IEEE Design & Diagnostic of Electronics Circuits and
Systems, (2002) 416.

[9] Ferrandi F., Ferrara G., Sciuto G., Fin A., Fummi F., Functional Test Generation for
Behaviorally Sequential Models, Proc. of the Design Automation and Test in Europe, (2001)
403.

[10] Deniziak S., Sapiecha K., Developing a High-Level Fault Simulation Standard", IEEE
Computer, May (2001) 89.

]11] Sapiecha K., Sapiecha J., Deniziak S., HTDD Based Parallel Fault Simulator, Proc. of the 5th
IEEE Int. Conference on Electronics, Circuits and Systems, Lisbon, 2 (1998) 217.

[12] Lee H. K., Ha D. S., HOPE: An Efficient Parallel Fault Simulator for Synchronous
Sequential Circuits, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 15(9) (1996) 1048.

[13] Graham C.R., Rudnick E.M., Patel J.H., Dynamic Fault Grouping for PROOFS: A Win for
Large Sequential Circuits, Int. Conference on VLSI Design, January (1997) 542.

[14] Pakers S., Banerjee P., Patel J.H, A parallel algorithm for fault simulation based on PROOFS,
Proc. IEEE Int. Conf. Computer Design, October (1995) 616.

[15] Samb D.G., Mueller-Thuns R.B., Blaauw D., Rahmeh J.T., Abraham J.A., Hierarhical Multi-
Level Fault Simulation of Large Systems, Journal of Electronic Testing Theory and
Applications, 1(2) (1990) 139.

[16] Cho C.H., Armstrong J.R., B-algorithm: A Behavioral Test Generation Algorithm,
International Test Conference, (1994) 968.

[17] Hayne R.J., Johnson B.W., Behavioral Fault Modeling in a VHDL Synthesis Environment,
VLSI Test Symposium, (1999) 333.

[18] Corno F., Cumani G., Sonza Reorda M., Squuillero G., RT-level Fault Simulation Techniques
based on Simulation Command Scripts, Proc. of Design of Circuits and Integrated Sytems,
(2000) 825.

[19] Fin A., Fummi F., A VHDL Error Simulator for Functional Test Generation, Proc. of the
Design Automation and Test in Europe, (2000) 390.

[20] Corno F., Prinetto P., Reorda M.S., Testability analysis and ATPG on behavioral RT-level
VHDL, International Test Conference, (1997) 753.

[21] Corno F., Reorda M.S., Squuillero G., An Interpretation Framework for Evaluating High-
Level Fault Models and ATPG Capabilities, Proc. of Design of Circuits and Integrated
Systems, (2001) 273.

[22] Guo R., Pomeranz I., Reddy S.M., A Fault Simulation Based Test Pattern Generator for
Synchronous Sequential Circuits, VLSI Test Symposium, (1999) 260.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 16:09:50

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

