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Abstract 

The aim of the paper is to present the decidability problems from a philosophical and historical 
perspective as well as to indicate basic mathematical and logical results concerning 
(un)decidability of particular theories and problems.  
 

1. Origin of the decidability problem 
It was David Hilbert with who one should associate the beginning of research 

on the decidability – he drew attention of mathematicians to this problem and 
made it into a central problem of mathematical logic. He called it das 
Entscheidungsproblem (what literally means: “the decision problem”).1 It 
appeared in a sense already in his famous lecture at the Congress of 
Mathematicians in Paris in August 1900. Hilbert proposed there a list of 23 most 
important problems of mathematics which should be solved in the future. 
Problem X was (cf. [1]):  

Given a diophantine equation with any number of unknown quantities and 
with rational integral numerical coefficients: To devise a process according to 
which it can be determined by a finite number of operations whether the 
equation is solvable in rational integers.2   
In the first quarter of the 20th century Hilbert formulated and developed a 

research programme, called today Hilbert programme. Its aim was the 

                                                 
*E-mail address: rmur@amu.edu.pl 
1It seems that the word das Entscheidungsproblem appeared for the first time in the paper “Das 

Entscheidungsproblem der mathematischen Logik” of H. Behmann given at the meeting of 
Deutsche Mathematiker-Vereiningung in Göttingen in May 1921 – cf. [1], page 21. 

2Eine diophantische Gleichung mit irgendwelchen Unbekannten und mit ganzen rationalen 
Zahlkoeffizienten sei vorgelegt: man soll ein Verfahren angeben, nach welchem sich mittels einer 
endlichen Anzahl von Operationen entscheiden läßt, ob die Gleichung in ganzen rationalen Zahlen 
lösbar ist. 
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justification of the classical mathematics. In this context there appeared the 
decidability problem (closely connected with the completeness problem), that is 
the problem of finding an effective method which would enable us to decide in a 
finite number of prescribed steps whether a given formula is a theorem of a 
considered (formalized) theory. The first – not quite clear and explicite – 
formulation of this problem can be found in Hilbert’s paper Axiomatisches 
Denken (1918; cf. [3]).3 The decidability problem was formulated in a direct and 
explicite way by H. Behmann in his Habilitationsschrift in 1922 (cf. [6]) where 
he wrote:  

A well defined general procedure should be given which in the case of any 
given statement formulated with the help of purely logical means, would 
enable us to decide in a finite number of steps whether it is true or false or at 
least this aim would be realized within the – precisely fixed – framework in 
which its realization is really possible.4   
Hilbert and Ackermann formulated the decidability problem in the book 

Grundzüge der theoretischen Logik in Chapter “Das Entscheidungsproblem im 
Funktionalkalkül und seine Bedeutung” in the following way (cf. [7], p. 73):  

The Entscheidungsproblem is solved when we know a procedure that allows, 
for any given logical expression, to decide by finitely many operations its 
validity or satisfiability.5   
They distinguished there various aspects of Entscheidungsproblem:  
– the satisfiability problem (or the consistency problem): given a formula, 

decide if it is consistent,  
– the validity problem: given a formula, decide if it is valid,  
– the provability problem: given a formula, decide if it is provable (in a 

given system).  
In the first-order logic all those aspects are equivalent – this follows from the 

completeness theorem of Gödel. Moreover, by Deduction Theorem in the case of 
finitely axiomatizable theories it suffices to investigate only the system of the 
first-order logic and not theories in general (in the case of non-finitely 
axiomatizable theories it does not suffice). It should be added that the decision 
problem for a system of the first-order logic is called the classical decision 
problem.  
                                                 

3One should admit that similar problems can be also found by Schröder in [4] and by 
Löwenheim in [5]. 

4Es soll eine ganz bestimmte allgemeine Vorschrift angegeben werden, die über die Richtigkeit 
oder Falschheit einer beliebig vorgelegten mit rein logischen Mitteln dargestellbaren Behauptung 
nach einer endlichen Anzahl von Schritten zu entscheiden gestattet, oder zum mindesten dieses 
Ziel innerhalb derjenigen – genau festzulegenden – Grenzen verwirklicht werden, innerhalb deren 
seine Verwirklichung tatsächlich möglich ist. 

5Das Entscheidungsproblem ist gelöst, wenn man ein Verfahren kennt, das bei einem 
vorgelegten logischen Ausdruck durch endlich viele Operationen die Entscheidung über die 
Allegemeingültigkeit bzw. Erfülbarkeit erlaubt. 
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Hilbert and Ackermann were of the opinion that the Entscheidungsproblem is 
the main problem of mathematical logic. In [7] they wrote:   

The Entscheidungsproblem must be considered the main problem of 
mathematical logic. […] The solution of the Entscheidungsproblem is [an 
issue] of the fundamental significance for the theory of all domains whose 
propositions could be developed on the basis of a finite number of axioms.6   

This conviction was based just on Deduction Theorem – indeed, a decision 
procedure for the first-order logic would generate (via this theorem) a decision 
procedure for any (finitely axiomatizable) first-order theory.  

Other logicians shared the conviction of the importance of the 
Entscheidungsproblem. P. Bernays and M. Schönfinkel wrote in [8]:   

The central problem of mathematical logic, which is also most closely related 
to the question of axiomatics, is the Entscheidungsproblem.7   

J. Herbrand begins the paper [9] with the words:  
We could consider the fundamental problem of mathematics to be the 
following. Problem A: What is the necessary and sufficient condition for a 
theorem to be true in a given theory having only finite number of hypotheses?   

Herbrand finished the paper [10] with the words:   
The solution of this problem [i.e., the decision problem – R.M.] would yield a 
general method in mathematics and would enable mathematical logic to play 
with respect to classical mathematics the role that analytic geometry plays 
with respect to ordinary geometry.8   

In [11] Herbrand added:   
In a sense it is [the classical decision problem – R.M.]  the most general 
problem of mathematics.   

F.P. Ramsey wrote in [12] (p. 264) that this paper was:   
concerned with a special case of one of the leading problems in mathematical 
logic, the problem of finding a regular procedure to determine the truth or 
falsity of any given logical formula.   
The roots of the decision problem can be traced while back by those 

philosophers who were interested in a general method of problem solving. One 
should mention here first of all the medieval thinker Raimundus Lullus and his 
ars magna as well as Descartes’ idea of mathesis universalis and Gottfried 
Wilhelm Leibniz with his characteristica universalis and calculus ratiocinator. 
                                                 

6Das Entscheidungsproblem muss als das Hauptproblem der mathematischen Logik bezeichnet 
werden. […] Die Lösung des Entscheidungsproblems ist für die Theorie aller Gebiete, deren Sätze 
überhaupt einer logischen Entwickelbarkeit aus endlich vielen Axiomen fähig sind, von 
grundsätzlicher Wichtigkeit. 

7Das zentrale Problem der mathematischen Logik, welches auch mit den Fragen der Axiomatik 
im engsten Zusammenhang steht, ist das Entscheidungsproblem. 

8La solution de ce problème fournirait une méthode générale en Mathématique, et permettrait 
de faire jouer à la logique mathématique, vis-à-vis de Mathématique classique, le même rôle que la 
géométrie analytique vis-à-vis de la géométrie ordinaire. 
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The realization of the latter idea should provide a method of mechanical solving 
of any scientific problem (expressed in the symbolic language). Partial 
realization of this idea (in fact restricted to mathematics) was found by the 
mathematical logic at the end of the 19th and the beginning of the 20th century.  

One should note that Leibniz distinguished between two different versions of 
ars magna:  

– ars inveniendi which finds all true scientific statements,  
– ars iudicandi which allows one to decide whether any given scientific 

statement is true or not.  
In fact, in the framework of the first-order logic an ars inveniendi exists: the 

collection of all valid first-order formulas is recursively enumerable, hence there 
is an algorithm that lists all valid formulas. On the other hand, the classical 
decision problem can be viewed as the ars iudicandi problem in the first-order 
framework. It can be formulated in the following way: Does there exist an 
algorithm that decides the validity of any given first-order formula?  

It is worth noticing that some logicians felt sceptical about the possibility of 
finding such an algorithm. Among them was J. von Neumann who wrote in [13] 
(pp. 11–12):   

It appears thus that there is no way of finding the general criterion for 
deciding whether or not a well-formed formula a is provable. (We cannot, 
however, at the moment demonstrate this. Indeed, we have no clue as to how 
such a proof of undecidability would go.) […] The undecidability is even the 
condition sine qua non for the contemporary practice of mathematics, using 
as it does heuristic methods, to make any sense. The very day on which the 
undecidability would cease to exist, so would mathematics as we now 
understand it; it would be replaced by an absolutely mechanical prescription, 
by means of which anyone could decide the provability or unprovability of 
any given sentence.  
Thus we have to take the position; it is generally undecidable, whether a 
given well-formed formula is provable or not. The only thing we can do is 
[…] to construct an arbitrary number of provable formulas. […] In this way, 
we can establish for many well-formed formulas that they are provable. But 
in this way, we never succeed to establish that a well-formed formula is not 
provable. 9 

                                                 
9 Es scheint also, dass es keinen Weg gibt, um das allgemeine Entscheidungskriterium dafür, 

ob eine gegebene Normalformel a beweisbar ist, aufzufinden. (Nachweisen können wir freilich 
gegenwärtig nichts. Es ist auch gar  kein Anhaltspunkt dafür vorhanden, wie ein solcher 
Unentscheidbarkeitsbeweis zu führen wäre.) [...] Und die Unentscheidbarkeit ist sogar die 
Condition  sine qua non dafür , dass es überhaupt einen Sinn habe, mit den heutigen heuristischen 
Methoden Mathematik zu treiben. An dem Tage, an dem die Unentscheidbarkeit aufhörte, würde 
auch die Mathematik im heutigen Sinne aufhören zu existieren; an ihre Stelle würde eine absolut 
mechnische Vorschrift treten, mit deren Hilfe jedermann von jeder gegebenen Aussage 
entscheiden könnte, ob diese beweisen werden kann oder nicht. 
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J. Herbrand in an appendix to his [11] wrote:   
Note finally that, although at present it seems unlikely that the decision 
problem can be solved, it has not yet been proved that it is impossible to do 
so.   

 
2. First (negative) results 

Note that before the 1930s some positive answers to the decision problem for 
particular theories have been obtained (we shall say more about those results 
later). However, the classical decision problem (i.e., the decision problem for the 
first-order logic) was unsolved. Notice also that to prove that there is no 
effective procedure to decide the formulas of the first-order logic one needs a 
precise definition of the notion of an algorithm and of an effective method (in 
the case of positive solutions one does not need a precise general definition). In 
fact, in the 1930s such definitions have been given by Church, Gödel, Turing, 
Herbrand, Kleene. The Church-Turing thesis formulated in 1936 stated that 
those precise definitions are adequate with respect to the intuitive notion of an 
effective procedure.10  

The method of an arithmetization of syntax introduced by Gödel enabled also 
to formulate precisely the decision problem. This was done by Alfred Tarski in 
[15]. Tarski proposed the following definitions:  

– a (first-order) theory T is said to be decidable if and only if the set of 
(Gödel numbers of) theorems of T is recursive,  

– a (first-order) theory T is said to be undecidable if and only if the set of 
(Gödel numbers of) theorems of T is not recursive,  

– a (first-order) theory T is said to be essentially undecidable if and only if T 
is undecidable and every consistent extension T’ of T (in the same 
language as T) is undecidable.  

The first result concerning the Entscheidungsproblem in a strict formulation 
was the theorem by A. Church in 1936 (cf. [16]) providing the negative solution 
of the decision problem for the first-order predicate calculus. In fact Church has 
proved that the set of all valid formulas of the first-order logic is not effectively 
decidable. A similar result was obtained a bit later by A. Turing. The method 
used was similar in both cases: it was shown that a certain undecidable 
combinatorial problem can be represented in the first-order logic, hence the 
latter is undecidable. In fact, Church has shown that the set of provable formulas 
(theorems) of the first-order logic is not λ-definable. The undecidability of the 
first-order logic is then a corollary via the completeness theorem (due to Gödel, 
1929) and the Church-Turing thesis.  

The result of Church has been later “sharpened”, i.e., it has been shown that 
the Entscheidungsproblem has a negative solution for a fragment of the first-
                                                 

10On Church-Turing thesis, its history and epistemological status see [14]. 
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order logic, viz. for the first-order predicate calculus in a language containing at 
least one binary predicate – this was done by Kalmár [17]. This contrasted with 
the earlier result by L. Löwenheim (1915), Th. Skolem (1919) and H. Behmann 
(1922) on the decidability of the classical monadic first-order predicate calculus. 
Note that the intuitionistic monadic first-order predicate calculus is not 
decidable!  

The undecidability result of Church implied also undecidability of the 
second-order logic (add that – as noticed above – Hilbert and Ackermann were 
talking about logic as such not distinguishing the order of it). Today one knows 
that the first-order logic being undecidable is semi-decidable, i.e., the set of 
(Gödel numbers of) its theorems is recursively enumerable whereas the second-
order logic is not even semi-decidable (this follows from Gödel’s 
incompleteness theorem).  

 
3. Studies on (un)decidability 

Church’s result was beginning of very intensive studies on the problem of 
(un)decidability. For a long time those problems were treated as central in the 
mathematical logic and the foundations of mathematics. Together with 
investigations on the complexity of decision procedures a new group of 
problems appeared, viz. the problem of how complicated the possible decision 
procedures can be.  

To systematize the presentation of the results obtained let us distinguish 
studies on the (un)decidability of: (a) concrete mathematical theories, (b) 
fragments of the first-order logic (both are connected via Deduction Theorem), 
and (c) problems in the computation theory. Those investigations contributed to 
the development of both mathematical logic and the recursion theory. The 
literature is very extensive here. In what follows examples of most important 
results in the indicated fields will be provided and some remarks on the methods 
used in the proofs will be given.  

 
3.1. (Un)decidability of mathematical theories 

Investigations on the decidability of mathematical theories were carried out 
long before the theorem of Church – in fact to prove the decidability of a theory 
one does not need a precise definition of decidability itself (only for a negative 
result such a definition is necessary!).  

The main methods used (nowadays) in proving the decidability of 
(mathematical) theories are the following:11  

– elimination of quantifiers,  

                                                 
11Detailed information on the methods used in proving the decidability or the undecidability of 

theories together with examples and references to the literature can be found, e.g., in [18]. 
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– modeltheoretic method,  
– method of interpretation.  
The first two methods are based in a theorem due to A. Janiczak (1950) and 

stating that if a theory T is consistent, complete and (recursively) axiomatizable 
then T is decidable. Methods (i) and (ii) are used just to show that a considered 
theory is complete and to obtain in this way its decidability.  

The method of elimination of quantifiers consists of indicating a set of a 
certain class Φ of formulas in the language of the considered theory (called basic 
formulas) such that (a) every formula of Φ is decidable, (b) any formula of T is 
T-equivalent to a Boolean combination of some formulas form Φ and (c) the 
decidability of basic formulas implies the decidability of the Boolean 
combinations of them.  

The method was initiated by L. Löwenheim (1915) and used in the fully-
developed form by Th. Skolem (1919) and C.H. Langford (1927). It was also 
intensively studied at the seminar conducted by A. Tarski at Warsaw University 
in 1927–29. Tarski and his students used this method to characterize definability 
and to prove the decidability of particular mathematical theories (cf. [19]). It was 
also used to describe and classify all complete extensions of a given theory. The 
elimination of quantifiers became there the method and a paradigm of how 
logicians should study axiomatic theories. The very name of the method comes 
from Tarski.  

With the help of the method of elimination of quantifiers, the decidability of 
various theories has been established, in particular the following theories have 
been shown to be decidable:  

– the arithmetic of addition (Presburger arithmetic) (Presburger, 1928–
1930),  

– elementary theory of identity (Löwenheim, 1915),  
– theory of finitely many sets (Löwenheim, 1915),  
– theory of discrete order DO (Langford, 1927),  
– theory of linear order in the set of rationals (Tarski, 1936),  
– theory of algebraically closed fields ACF (1949),  
– theory of Boolean algebras (Tarski, 1949),  
– theory of real numbers (Tarski, 1951; Cohen, 1969),  
– theory of abelian groups (Szmielew, 1949),  
– theory of well order (Tarski, Mostowski, Donner, 1949, 1978).12  
Note that Presburger arithmetic T+ is the first-order theory in the language 

L(T+) with 0, S, + as the non-logical constants and based on the following non-
logical axioms: 
 ( )0 S x≠ , 

                                                 
12On the (dramatic) history of this result see [19]. 
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 ( ) ( )S x S y x y= → = ,  
 0x x+ = ,  
 ( ) ( )x S y S x y+ = + ,  
 nduction scheme for formulas ϕ of the language L( +T ).  

Notice that results on the decidability of the first-order theory of successor 
(Herbrand, 1928) and of the theory of multiplication (with successor but without 
addition!) (Skolem, 1930) has been also obtained. Note that in contrast to those 
results the arithmetic of successor, addition and multiplication is essentially 
undecidable!  

The second indicated method, i.e., the modeltheoretic method is usually used 
to show (by methods of model theory) that a given theory is complete or to study 
systematically its all complete extensions. Sometimes a combination of this 
method and the method of elimination of quantifiers is used. Using those 
methods one has proved the decidability of the following theories:  

– theory of linear dense order without the first and last element DNO,  
– theory of algebraically closed fields of a given characteristic,  
– theory of p-adic fields (Ax, Kochen, 1965-1966),  
– theory of all finite fields (Ax, 1968),  
– theory of real closed fields RCF,  
– theory of linearly ordered sets (Ehrenfeucht, 1959 – result announced only; 

Läuchli 1966).  
The last indicated method of proving decidability, i.e., the method of 

interpretation can be briefly described as follows. Let a decidable theory T0 
formalized in a language L0 be given. We are asking if another given theory T 
formalized in a language L is decidable. To answer this question one defines a 
computable (recursive) function f mapping formulas of the language L on 
formulas of the language L0 such that if ϕ is a sentence of L then f(ϕ) is a 
sentence of L0 and T├ ϕ if and only if 0T ├ f(ϕ). This gives us a decision 
procedure for the theory T.  

By this method the decidability of, e.g., the second-order monadic theory of 
one successor S1S (Büchi, 1962) and of the weak second-order theory of one 
successor WS1S (Büchi, 1960; Elgot, 1961) have been proved.  

In the case of decidable theories one can ask the question: how complex is a 
decision procedure? To indicate some answers and to show that decision 
procedures are usually very complicated (mostly of exponential complexity) and 
hence not applicable practically, let us mention the following results:  

– A decision procedure for Presburger arithmetic is of the complexity at least 
cn22  for a certain constant c>0 , i.e. to decide whether a formula ϕ of the 

length n is a theorem of Presburger arithmetic one needs at least 
cn22  steps 

[Fisher and Rabin, 1974].  
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– The complexity of the theory of multiplication is at least 
cn222  for a 

certain constant c>0 [Fisher and Rabin, 1974].  
The problem whether there are decidable theories with practically applicable 

decision procedures is still open. It is connected with the famous problem of 
whether P=NP, which is nowadays the central problem of the recursion theory 
and of the complexity theory.  

Let us turn now to proofs of the undecidability. Main methods of proving the 
undecidability of a theory are the following:  

i) the method based directly on the ideas of Gödel’s proof of the 
incompleteness theorem,  

ii) the method of interpretation.  
The method (i) is based on the theorem stating that if all recursive relations 

are strongly representable in a theory T then T is undecidable (moreover, the set 
of Gödel numbers of theorems of T and the set of Gödel numbers of negations of 
theorems of T are not recursively separable). This method can be applied only in 
the case of theories which have built-in an appropriate fragment of the arithmetic 
of natural numbers built in.  

The method (ii) has been mostly developed by A. Tarski. Generally speaking 
it consists in showing that a known undecidable theory 1T  can be interpreted 
(embedded) into a theory 2T  under question. If it is so then the theory 2T  is 
undecidable. Here are some examples of undecidable theories:  

– Peano arithmetic (i.e., the arithmetic of natural numbers in the language 
with 0, S, +, · as non-logical constants),  

– theory of rings (Tarski, 1951),  
– theory of ordered fields (Robinson, 1949),  
– theory of lattices (Tarski, 1951),  
– predicate calculus with at least one binary predicate (Kalmár, 1936),  
– theory of partial order (Tarski, 1951),  
– theory of two equivalence relations whose intersection is the identity 

relation, theory of two equivalence relations, theory of one equivalence 
relation and one bijection (Janiczak, 1953),  

– theory of groups (Tarski, 1953),  
– theory of rationals with + and (J. Robinson, 1949).  
The tenth problem of Hilbert mentioned at the very beginning of this history 

on (un)decidability was solved in the 1970s by Y. Matiyasevich who using some 
earlier results of M. Davis, H. Putnam and J. Robinson showed that a relation R 
is recursively enumerable if and only if R is diophantine. Since there are 
recursively enumerable relations which are not recursive, it follows that not 
every diophantine relation is recursive, hence the tenth problem of Hilbert has 
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a negative solution, i.e., there is no effective method of deciding whether a given 
diophantine equation has solutions or not.  

 
3.2. (Un)decidability of fragments of the first-order logic 

Since the first-order predicate calculus is undecidable (as shown by Church), 
one can ask whether given fragments of it are decidable or not. This problem, 
called the classical decision problem, has been studied intensively. Nowadays 
this field of problems can be treated as closed (cf. the monograph [20]).  

The investigated fragments of the first-order logic are usually described with 
the help of prefixes. Let us explain this using an example: so ( ) ( )1 0, , ,ω⎡∀∃∀ ⎤⎣ ⎦  
denotes the class of all formulas in the prenex form with the quantifier prefix 
∀∃∀  in the language with infinitely many unary predicates, one binary 
predicate and no function symbols. The symbol ( ) ( )1 0, , ,ω

=
⎡∀∃∀ ⎤⎣ ⎦  denotes a 

similar class of formulas but now in the language there is the identity = symbol.  
As an example of results obtained in studies of (un)decidability of fragments 

of the first-order logic let us say that the following fragments are undecidable:13  
– ( ) ( )0 3 0, , ,⎡∃∀∃∀ ⎤⎣ ⎦  (Büchi, 1962),  

– ( ) ( )0 0, , ,⎡∀∃∀ ∞ ⎤⎣ ⎦  (Kahr, Moore, Wang, 1962),  

– ( ) ( )3 0 0, , ,⎡ ⎤∀ ∃ ∞⎣ ⎦  (Gödel, 1933),  

– ( ) ( )2 2 0 1 0, , ,∞ ∞⎡ ⎤∃ ∀ ∃ ∀⎣ ⎦  (Kalmár, 1932).  

 
3.3. (Un)decidability in the computation theory 

Problems of decidability have been studied also with respect to the 
computation theory. The best known result is here the undecidability of the 
halting problem. The question is: can it be effectively decided whether a given 
Turing machine stops at a given input x? The problem can be reformulated in the 
following way: let (ϕx) be the effective enumeration of all recursive functions. 
We are asking whether the set ( ){ }xx, y : yϕ< > ↓  is recursive, i.e., whether it 

can be effectively decided if the function ϕx is defined for an argument y? The 
answer to this problem is negative. Hence the halting problem is undecidable.  

Here are some examples of other undecidable problems from the computation 
theory:  

– is x 0ϕ = ?, 

                                                 
13Let us add that in this field worked also and received some interesting results Polish logician 

Józef Pepis. He was active at the Jan Kazimierz University in Lvov. In August 1941 Pepis was 
killed by Gestapo. 
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– is x yϕ ϕ= ?,  

– does ( )xy dom ϕ∈ ?  
– does ( )xy rng ϕ∈ ?  
– is ( )x 0xϕ = ?  
– does ( )x xϕ ↓ ?  
– does ( )x 0yϕ = ? 
And here are some other examples in the language of Turing machines. The 

following problems are undecidable:  
– does a given Turing machine M stop on all inputs?  
– does for a given Turing machine M and a given input x there exist an y 

such that M(x)=y ?  
– does the computation of the Turing machine M on the input x use all the 

states of M?  
– does for a given Turing machine M and for x and y hold M(x)=y ?  

 
4. Conclusions 

As shown above most mathematical theories are undecidable. This means that 
for such theories sets of Gödel numbers of their theorems are not recursive, 
hence not definable (strongly representable) in Peano arithmetic. This indicates 
some limits in defining notions in formal systems. An interesting comment to 
this was given by W.O.V. Quine who said that those systems wanted to swallow 
a greater piece of ontology than they were able to digest. On the other hand, the 
cardinality argument shows that this phenomenon is quite normal: in fact, there 
are uncountably many subsets of the set of natural numbers while the set of 
formulas of the language of Peano arithmetic, hence the set of definable subsets 
of the set of natural numbers, is countable. What is surprising here is that among 
sets of natural numbers that are not definable (not representable) in arithmetic 
are sets of Gödel numbers of theorems of most mathematical theories.  

The fact that most mathematical theories are undecidable should not be 
astonishing. Indeed, problems formulated in decidable theories are not any 
longer scientific problems – they can be solved (at least theoretically) in a 
mechanical way. On the other hand, since the decision procedures are usually of 
an exponential complexity, they are not practically applicable. So one comes to 
the conclusion that the mind of a mathematician cannot be replaced by a 
machine (even in the case of a decidable theory). But why does the human mind 
overcome a machine? Does the reason for that lie in the fact that a human being 
is able to perform infinite operations? And maybe it does not work 
algorithmically but in a creative way, it can move to higher levels (to use higher 
types) and in this way find solutions inaccessible at lower levels?  
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The final (and in a sense optimistic) conclusion can be that there will always 
be open problems mathematicians can work on, there will always be a need for 
creative thinking in mathematics. Tarski put it in the following amusing way (cf. 
[21], p. 166): 

I have no doubt that many mathematicians experienced a profound feeling of 
relief when they heard of this result. Perhaps sometimes in their sleepless 
nights they thought with horror of the moment when some wicked 
metamathematician would find a positive solution of the problem, and design 
a machine which would enable us to solve any mathematical problems in a 
purely mechanical way, so that any further creative mathematical thought 
would become a worthless hobby. The danger is now over, that such a robot 
will ever be created; mathematicians have regained their raison d’être and 
can sleep quietly.   
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