Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 11:44:10

T Annales UMCS

3

@ Annales UMCS Informatica Al 3 (2005) 159-167 Informatica
a5, Lublin-Polonia

ERs
SNWERSHe,
&
¢
s moa0™

Lugp o™ .
o Sectio Al

http://www.annales.umcs.lublin.pl/

Development of the cross-platform framework
for the medical image processing

Marcin Denkowski , Michat Chlebiej, Pawel Mikotajczak

Laboratory of Information Technology, Maria Curie Sktodowska University,
pl. M. Curie-Skiodowskiej 1, 20-031 Lublin, Poland

Abstract

This paper presents the development process of a platform for image processing with a focus
on the medical imaging. Besides general image processing algorithms and visualization tools, this
platform includes advanced medical imaging modules for segmentation, registration and
morphological analysis. It allows fast addition and testing of new algorithms using a modular
structure. New modules can be created by using a platform-independent C++ class library and can
be easily integrated with a whole system by a plug-in mechanism. An abstract, hierarchical
definition language allows the design of efficient graphical user interfaces, hiding the complexity
of the underlying module network to the end user.

1. Introduction

Our image processing framework SemilVis was developed as a general
platform for a medical pipeline, including data import, image processing and
visualization. The main features of this system are its portability and ease of
extension. Platform independence is achieved by using freely available cross-
platform libraries like Qt Toolkit for user interface development and file
handling [1] and Kitware Visualization Toolkit (Vtk) for image processing and
rendering [2]. Extensibility is achieved by a plug-in mechanism. Developers can
add functionality to SemiVis by implementing their own plug-ins and registering
them with the framework. This can be done without recompilation of the source
code. Since all core and plug-in classes are implemented in C++ the code can be
used to generate executable programs on many systems.

The whole system is intended to be open source software published under a
GPL license [3]. For that reason all file and structure formats used by this system
must be open standards (for example XML [4], DICOM [5]).

* Corresponding author: e-mail address: denmar@goblin.umecs.lublin.pl

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 11:44:10

160 Marcin Denkowski, Michal Chlebiej ...

This defines the system as the universal platform for image processing and
only the plug-in modules designate the use of this system in medical imaging.
Together with the system core in the framework there are included modules
for medical image processing for such purposes as:
1. data managing;
2. 2D and 3D visualization with interaction tools;
3. basic image processing [6]:
— segmentation,
transformation,
filtering,
2D and 3D editing,
analysis;
4. image and movie generation for demonstration purposes.

2. System project

Functionality of this framework is divided between two main parts: system
core and modules. Even though structure of this system is complicated, its usage
must be intuitive and conventional. Therefore both main parts, the core and
modules, must not have too many use cases that interact with the user, or
existing complicated use cases must be partitioned to form a hierarchical
structure of simpler use cases [7]. Figure 1 presents the most general use case
diagrams for two perspectives for both main parts of the system.

SemiVis SemiVis

Add Module Set Application state
Delete Module
Save Application state

User
User

Use Module
VAVA

Fig. 1. Two use case perspectives for SemiVis framework

System Core perspective consists of three main use cases that are responsible
for setting and saving application state as well as managing the application
configuration. Module perspective involves four main use cases for managing
modules, i.e. for adding and removing modules from the application, linking two
modules and using modules. The last use case is extended by two other use
cases: Update use case that releases module processing and Set Parameters use

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 11:44:10

Development of the cross-platform framework ... 161

case for changing the module configuration. Of course every module has its own
use case diagram that extends the shown general diagram, but that diagram
depends on module purposes and its designer.

The whole framework was created according to the paradigms of object-
oriented design, and defines abstract, hierarchical and modular collections of
packages, classes and components with all the essential communication
protocols between them [8,9] (see package diagram in Figure 2). It is generally
divided into five main packages responsible for specific functions:

1.

Main Package — core management, application configuration and safety.
This package is the major building block for the whole system, which is
fundamental for an object-oriented framework.

. Frames Package — user interaction for Main Package, i.e. all docking

frames for logging, configuration, and information panels.

. ProcessObjectMan Package — module management. This package is

responsible for modules (plug-ins) loading, proper functioning and
removal.

. Workspace Package — maintaining graphical interface between user and

modules, graphical representation of modules and connections between
them.

. Modules — all modules included into framework or added by the user, built

according to the rules presented in the next chapter.

—lM p— Frames
e I pa—

- [«interfejs» -
cMaIn_r QDockWindow

cinfoViewer

Workspace]

[ccanvasLinkk----------- - cDataObject

. - |
chigureBditorf—-17 [Modules ProcessObjectMan |
L

B —] |

2 : .
Ol cProcessObjectManager |

T

IcProcessObjectWidget ! «ffiend» Y ! !

T | | cXML:Nriter | |cXMLII?eader|

Fig. 2. General SemiVis framework package and class diagram

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 11:44:10

162 Marcin Denkowski, Michal Chlebiej ...

3. Modules

The whole framework is strongly module oriented and can not work without
at least one module loaded. The interface between the system core and modules
has been defined in a ProcessObjectMan package through a cProcessObject
abstract class. This class offers operations common for all modules. Every
module must derive from this class directly or indirectly. Every module class is
also associated with a specific class derived from a cProcessObjectWidget class,
which implements an interface for GUI representation of a module. The main
principle of module function can be described as collecting data from its inputs,
processing them and passing to its outputs. The module can have any number of
entries and any number of exits. The modules can be connected into pipelines by
connection exits from one module to the entry for other module(s), but there are
some limitations:

— one exit can propagate to any number of entries,

— one entry can be linked only to one exit.

Data processed by modules are also encapsulated into classes derived from
the common ancestor cDataObject class. The important feature of this class is
the ability for sharing internal data between the objects of the same type. For that
purpose a reference count, deep copy and shallow copy mechanisms are used. In
the deep copy case a new copy object is an exact copy with all internal data of
the original object and is completely independent. On the other hand, for a
shallow copy only a small part of internal data is copied but larger data parts are
shared by both the original and copy objects. This mechanism was implemented
for memory saving reasons. It is easy to imagine how much memory is needed if
processing of an object takes up 50 MB (average medical image data set), each
module has its own copy and there are about 30 modules in a pipeline.

Figure 3 presents a simplified project perspective of module classes and data
objects classes [7]. Class cProcessObject, as an ancestor for all module classes,
defines operations that enable connecting output (getOutput() operation) from
one module to inputs (set/nput() operation) of other modules and operations that
force data processing (update() operation). This class depends on the
cDataObject class and is associated with the cProcessObjectWidget class by
«friendy stereotype [7].

Modules can also be arranged into packages according to their specified
functions:

1. input-output — modules for loading, saving, converting and maintaining
various medical image standards (DICOM, TIFF, RAW [5]), other digital
images (BMP, JPEG, PNG) and encapsulating these images into internal
objects representation. An example of GUI representation is shown in Fig.
4a.

2. Information, statistics — modules responsible for various informational and
statistical outcome generation (see Fig. 4b).

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 02/02/2026 11:44:10

Development of the cross-platform framework ...

163

cPolyData

cDataObject

cLUTData

[-refCount

cHistogramData

cDataSet

/\

clmageData

e
efriends cProcessObject
+update() | |
cParamManagment +setlput()
-paramsMap +getOutput()
\ \ |
[csource | [cMinMaxFind] [ovisualization| [c | [cRegionGrowing|
|

| cRawDataReader | I cDICOMReader]

Fig. 3. SemiVis framework package and class diagram

- - VX . - VX
Browse ||arfsourcesfdata.iBra.in9.dat Data sizes Data props
Minimurn: - 0 Tarme: Braing dat
258 v [256 Massimum: 943
Trpe: R
Vel 1 vl 1 Vasel2: 1 Ksize: 258
. wolume: 6713560
Data type: uint16 - V¥ gize: 256
2 size: 199 Surface : 482654
Byte order Little Endiar -
Close | | Zppi | ‘ Close | [T |
File updated 4 Data updated v
a) b)

Fig. 4. Example of GUI representation of input-output a) and information b) modules

3. Visualization — modules for graphical representation of dataset:
a) 2D — allowing two-dimensional visualization of volumetric data from
the three orthogonal perspectives (transversal, sagittal and coronal),
providing selection from a color lookup-table (LUT) and supplying the

masking mechanism for the dataset (Figure 5).

b) 3D — providing a set of three-dimensional visualization tools like
volume rendering (raycasting, texture mapping), surface rendering
(isosurfaces rendered as triangle meshes) rendering together with a wide
range of manipulation mechanisms providing a good spatial orientation
in volumetric datasets (Figure 6). These modules rely heavily on
OpenGL library [10].

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 11:44:10

164 Marcin Denkowski, Michal Chlebiej ...

¢) Graph visualization — histogram of dataset, scatter-plot, and graphical
representation of various data relationships.

4. Segmentation — including modules for standard 3D image segmentation
mechanisms (thresholding, region based, contour based, fuzzy logic).

5. Filtering — providing a set of morphological, convolution and diffusion
filters.

6. Transformation — translation, rotation, rigid body, affine transformations,
manual registration of two datasets.

Fig. 6. Examples of three dimensional visualizations, from left: volumetric rendering, textured
isosurface rendering, and isosurfaces rendered as triangle meshes

4. Data processing pipeline

Every module is responsible for one, specific function performed on entry
data. To achieve an aggregation of functions of several modules we can connect
them into pipeline. Modules can be linked either in series or in parallel. The
aggregate action starts from the bottom module and propagates to upper modules
as far as the current processed module is configured to be auto updated.

An examplary action of 2-dimensional visualization of a data set is shown in
the sequence diagram in Fig. 7a. The operator User starts the sequence by
updating (update() operation) rawReader module. This module creates a data
object image («createy signal), loads data set from file and converts it into an
internal format. In the next step the rawReader puts a properly prepared data
object into the entry of the connected module and forces it to update (the
AutoUpdate flag of this module is set to frue value). This module creates its own
shallow copy of the data object and processes these data. The third module in the
shown pipeline is vis2D and has the AutoUpdate flag set to false so that its

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 11:44:10

Development of the cross-platform framework ... 165

update must be released by the user. In this case the module gets the data from
its entry and processes it i.e. visualizes the data according to the module
configuration. See Fig. 7b for a module processing pipeline using a graphical

interface.
| ‘awReader cRawbataReder ‘ ‘ minmaxFind - cMinvixFing w520 - cDataviewzn
* f
1 | oo
image : cmageData. i / N\
Aiciuy 1
setinput(image) { h
0 O
J e scomats| [z [romeonr]
| «createn 0
update update() ‘]
'
!
getData() m
| 00O
’77:‘ \:
\
| getOutput() : !
I 0 O
-
L a update() T e
| getData() | e
: L :
| i RawDataReader
|]
'
| ! ;
; | :
a) b)

Fig. 7. Example of sequence diagram for the data processing pipeline a),
graphical Ul representation of pipeline b)

5. Graphic user interface

The main factor that usually decides whether the application is functional or

not is the way the program controls the data flow and communicates with the
user.

B St s o Qo 134
CEH 5 o [owemms]

Fig. 8. GUI examples of SemiVis framework with simple visualization pipelines
and windows of involved modules

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 11:44:10

166 Marcin Denkowski, Michal Chlebiej ...

So the creation of an intelligible, flexible and useful graphical user interface is in
principle a very important task. For this reason, the authors decided to use a
multiple-document-interface (MDI) concept [9] with dockable windows from
Frames Package and independent ProcessObjectWindows for each module. The
central part of the application occupies the Workspace — the panel for defining
data processing pipelines from module blocks. All application Frames can be
docked to the Workspace or flattened around as independent windows. All
modules have their own controlling main window designed independently for
each module to fulfill their functionality. See Fig. 8 for the best illustration of
graphical user interface.

6. Physical structure

The created system consists of several elements. The main one is the
activating component SemiVis Core, which includes all the essential logical
dependence mechanisms, GUI interface, and managing mechanisms. The
modules making up the full functional system are delivered separately as
dynamic shared system-dependent libraries (Linux — so, MS Windows — dll).
These libraries need to harmonize with some internal components (i.e. OpenGL
library). Configuration files are also included in the whole system package.

An individual, and also very important, task is the problem of delivering the
fully functional API interface allowing creation of personal components. The
API consists of a static library including binaries and the header files package.
The API documentation is also included as a set of html files. See Fig. 9 for the
diagram of system components.

The system requires at least a Pentium III processor. The lower limit of
operating memory is 256 MB, but this may be insufficient for most medical
datasets and long task pipelines. Installing at least 1 GB of RAM is
recommended. For high quality and efficient visualization, the OpenGL
compatible graphics card is indispensable. The application has been compiled
and is currently being tested on a Linus system (kernel v. 2.4+) and MS
Windows (2000, XP) [11].

Modules]

api.lib Include files and
static common
DICOMReader.so library
7
/

.
/ N

’

// .
SemiVis Core ¢----170) include Configuration files

o DataSetView2D.so

\\

\
N
N
S

VolumeRendering.so ~_ ; API Documentation in html W
External Comp

Fig. 9. SemiVis components diagram

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 11:44:10

Development of the cross-platform framework ... 167

7. Conclusions

The SemiVis framework and its plug-ins provide a tool for visualization,

manipulation and processing of medical datasets of wvarious types. Its
extensibility and adaptability allow the user to tailor and modify the systems
capabilities to suit his/her own context. Included modules are sufficient for
typical medical image processing but add-on tools give almost infinite
possibilities of implementing user functions. Though the system is still in the
early beta phase, it is developing rapidly.

— e ——
AN N BN —
[l T S S M

References

http://www.trolltech.com

http://www kitware.com

http://www.gnu.org/copyleft/gpl.html

http://www.w3.org/XML/

http://medical.nema.org/

Gonzalez R.C, Woods R.E., Digital image processing, Addison-Wesley Publishing Company,
Inc., (1992).

Booch G., Rumbaugh J., Jacobson 1., UML: przewodnik uzytkownika, Wydawnictwa
Naukowo-Techniczne, Warszawa, (2002), in Polish.

Sommerville 1., InZynieria oprogramowania, Wydawnictwa Naukowo-Techniczne,
Warszawa, (2003), in Polish.

Hamlet D., Podstawy techniczne inzynierii oprogramowania, Wydawnictwa Naukowo-
Techniczne, Warszawa, (2003), in Polish.

[10] Neider J., Davis T., Woo M., OpenGL Programming Guide: The official guide to learning

OpenGL, Release 1, Addison Wesley, (1993).

[11] Mitchell M., Oldham J., Samuel A., Linux. Programowanie dla zaawansowanych, Wydanie I,

Wydawnictwo RM, Warszawa (2002), in Polish.

http://www.tcpdf.org

