Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 02/02/2026 06:54:46

oo Annales UMCS

¢ @We  Annales UMCS Informatica Al 7 (2007) 15-25 Informatica

;’%j@wjﬁji Lublin-Polonia
VL Sectio Al

http://www.annales.umcs.lublin.pl/

Improved genetic algorithm for the context-free
grammatical inference

Adrianna Gietka"

Institute of Computer Science, University of Gdansk

Abstract

Inductive learning of formal languages, often called grammatical inference, is an active area in
machine learning and computational learning theory. By learning a language we understand
finding the grammar of the language when some positive (words from language) and negative
examples (words that are not in language) are given. Learning mechanisms use the natural
language learning model: people master a language, used by their environment, by the analysis of
positive and negative examples. The problem of inferring context-free languages (CFG) has both
theoretical and practical motivations. Practical applications include pattern recognition (for
example finding DTD or XML schemas for XML documents) and speech recognition (the ability
to infer context-free grammars for natural languages would enable speech recognition to modity its
internal grammar on the fly). There were several attempts to find effective learning methods for
context-free languages (for example [1,2,3,4,5]). In particular, Y.Sakakibara [3] introduced an
interesting method of finding a context-free grammar in the Chomsky normal form with a minimal
set of nonterminals. He used the tabular representation similar to the parse table used in the CYK
algorithm, simultaneously with genetic algorithms. In this paper we present several adjustments to
the algorithm suggested by Sakakibara. The adjustments are concerned mainly with the genetic
algorithms used and are as follows:

— we introduce a method of creating the initial population which makes use of characteristic
features of context-free grammars,

— new genetic operations are used (mutation with a path added, ‘die process’, ‘war/disease
process’),
— different definition of the fitness function,

— an effective compression of the structure of an individual in the population is suggested.
These changes allow to speed up the process of grammar generation and, what is more, they
allow to infer richer grammars than considered in [3].

1. Introduction

The aim of this work was to design an effective algorithm to generate a
context-free grammar of an unknown language L¢r provided two sets of words
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are given: a set of positive examples S (words from the language Lcr) and a set
of negative examples S. (words that are not in Lcr). The output of the procedure
which uses genetic algorithms is a context-free grammar of Lcr, with minimal
sets of nonterminals and productions. In section 2 we introduce some basic
definitions and the idea of Sakakibara [3] on tabular representation. Section 3
contains the description of two versions of the implemented algorithm. Section 4
presents the results of the computer experiments carried out. The last section
contains a brief summary and some conclusions.

2. Preliminaries

Definition 1. 4 context-free grammar (CFQG) is a quadruple G=(N, %, P,S), where
N is an alphabet of nonterminal symbols, ¥ is an alphabet of terminal symbols
such that NmXZ=J, P is a finite set of production rules of the form A—a for AeX
and ae(NUZ)*, and S is a special nonterminal called the start symbol. For
B,ye(NUZ)* we write f=y if there exists a production 4—a and = v14y,, ¥ =
Yiay2, for some vyi,y,€(NUX)*. By =* we denote the reflexive and transitive
closure of =. The language generated by CFG denoted by L(G)={weZX*:
S=*w} is called a context-free language [6].

Example 1. Let G=(N,%,P,S), where N={S,X}, Z={a,b,c}, P={S — Sc | aXbc,
X — aXb | 1}, then G generates a context-free language L,={a"b"c" : n,m>1}.
Definition 2. We say that a context-free grammar G=(N,Z,P,S) is in Chomsky
normal form if all the productions are of the form A—B or A—a where 4,B,CeN
and aeX.

Example 2. For the language L, the context-free grammar in Chomsky normal
form can be defined as follows Gcr=(N,%,P,S) where N={S,4,B,C XY},
Y={a,b,c} and P={S — SC | XC, X > YB | AB, Y > AX, A —>a, B— b C—
c}.

For each context-free language L such that A ¢ L there exists a grammar G
in Chomsky normal form such that L(G) = L¢r (A stands for the empty word).
Definition 3. A representative sample of G, is defined to be a finite subset of
L(G) that exercises every production rule in G, that is, every production is used
at least once to generate the subset. We denote the representative sample by R..
Example 3. For the language L;={a"b"c" : n,m>1} and the grammar G from
example 2 we have the following representative samples:

1) R.={aabbcc}

S = SC = (XC)C = (YB)CC = (AX)BCC = A(AB)BCC =* aabbcc

2) R.={aabbc,abcc}

S= XS = (YB)C = (4X)BC = A(AB)BC =* aabbc
S = SC = (XC)C = (4B)CC =* abcc
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Definition 4. The Cocke-Younger-Kasami parsing algorithm (CYK algorithm) is
a deterministic algorithm for verifying whether some word w=a,a,...a,€X* can
be derived in the context-free grammar G=(V,%,P,S) in Chomsky normal form.
In a finite number of steps we produce a triangular table of size nxn consisting
of some subsets of N. A nonterminal A appears in the ith column and the jth row
if A=*a,a;1:...a;4;.1, then it derives a subword of length j starting with a..
Finally, the start symbol S appears in 1st column and nth row if and only if
weL(G).

Example 4. For the grammar G¢r (from example 2) and the words w,=abccel,
and vi=aabb¢L, we have the following tables:

4ls 4] x|

30S 3y

2| X 2 X

14]Blc]|C] 1|4]4][B]B]
a b ¢ ¢ a a b b

Let us observe that if the grammar is unknown but we assume that each word
has a derivation in some context-free grammar in a Chomsky normal form, then
we can create a tabular representation inserting different nonterminals into each
place in the table.

Definition 5. The tabular representation for the word w in the grammar, denoted
by T(w), is a triangular table [#;;] filled with subsets of nonterminals in the
following way:

— t;; for j=2,...,n, i=1,...,n+1-j consists of j-1 different nonterminals, that is

XX

— t;1 for i=1,...,n consists of a singleton {X;,,}.

The tabular representation 7(w) defines the grammar Gt=(N,Z, P,S) such that

N={X, 2<i<n 1<i<n-j+1, 1<k < jlulx, [1<i<n}{s)

4k, ""’Xi,j,k,fl e

i,j,k ik ik, j—k,m

P={X. > X, X 2<j<n 1<i<n-j+1, 1<k<j, 1<I<k, lSmSj—k}

ulx,,, »ali<is< n}u{S - Xl,n,k|lsk<n}

i

Example 5. The tabular representation for w=a,a,a;a4, where a;€X for i=1,....4
is as follows:

Xl,4,1) Xl,4,2» Xl,4,3

Xz Xi32 Xo31, Xo32

X1,2,1 X2,2,1 X3,2,1

X1, Xy, X | X |
ay a as ay

For example, the following productions are included in this representation:
Xiagr — XiaX50 | X111X232
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Xo32 — X001 X411
X1 — as

Variables which are not used are denoted by O in our representation. For
example for words w;=abccel, and w,=aabbcel, we have the following
representation, using the production rules from grammar G¢r, example 2:

$,0,0,0
$,0,0 X,0,0 0,0,0
5,0 0,0 0,0 0.y [o00
X o |o 0 X o |o
A B [c |[c | A A B |B [C
a b c c a a b b c

3. Applying genetic algorithms to learn CFG

We assume that a finite set S, of positive examples (which contains a
representative sample of some grammar for the unknown language Lcr) and a
finite set S_ of negative examples, are given. We try to find a grammar G¢r in
Chomsky normal form which generates the language Lcr and contains the
minimal number of nonterminals and productions. To achieve our goal we
employ a genetic algorithm (GA) which is a search technique in the space of
alternative solutions of the problem [7].

Two versions of the algorithm were implemented and used in experiments.
They differ in the structure of individuals of the population and also in the
applied genetic operations.

3.1. Learning algorithm using full tabular representation
Here we list the main steps of the algorithm (the details are further in the
paper):
1. Select a minimal pseudo-representative sample R, from the set of positive
examples S..
2. Find the tabular representation for words from R., create the initial population
of individuals and calculate the fitness of each individual.
3. While the fitness of the best individual in the population does not satisfy the
termination criteria repeat the following steps:
3.1.Using the roulette wheel method create the ‘new’ population of
individuals from the current population.
3.2.For individuals from the ‘new’ population perform:
1. crossover on pairs of individuals,
11. mutation of individuals,
iii. mutation with erasing,
iv. mutation with a path added.
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3.3.Calculate the fitness function for ‘new’ population.
3.4.Merge ‘new’ and ‘current’ population:
i. increase the age of individuals in the population and remove some
oldest individuals,
ii. if the size of the population exceeds the predefined limit perform
“war/disease process” (see [8] for details).

Selecting a minimal pseudo-representative sample

In order to select a minimal pseudo-representative sample R.c S, we
proceed as follows. We select words from S., one by one, starting from the
shortest one and proceeding to the longer ones. For each word, treated as a one
element representative set, we generate a random initial population. If, in a
population generated for a word, there exist individuals with non-zero fitness
function which represent grammars generating some other words from ., then
those words can be excluded from R.. The aim of this method is getting the
possibly smallest representative sample for our language, but our result may not
be the optimal solution for our language, and for that reason we notice the
achieved set pseudo-representative.

The structure of individuals

An individual is a vector of bytes corresponding to identifiers of variables
from the tabular representation of all the words from the representative sample
plus one byte to remember the age of an individual. With no loss of generality
we can assume that productions of type 4 — a are fixed and for each terminal
a € X there is one-to-one correspondence with a nonterminal 4 € N. In this way
we can delete variables X;;; (from the first row in the tabular representation)
from the individuals. Similarly, variables in the last row Xj,, where n is the
length of the word and 1<k<n, finally would be identified with the start symbol S
and for that reason they are counted as one nonterminal when calculating the
fitness function.

The size of an individual is

where

and
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Example 6. Assume R.={w,w;}, where w,=a,a>aszas, wy=b,b,b; and a,b;eX.
Then the structure of individual is:
(Age, Xayp, Xayp 1, Xaysg, Xaysg, Xasy, Xays, Xayzo, Xayg), Xayao, Xayas,
Xb12,1,Xb22.1, Xb1 3.1, XD 3.2)
where Xi; ., corresponds to a respective variable in the tabular representation for
the word w;. Besides, the special value 0 corresponds to the variables eliminated
in the process of learning.

This structure is very similar to that used in [3]. The difference lies in an
additional gene for storing the ‘age’ of individual (used by the ‘die process’
function) and also omitting the fixed variables described above.

Fitness function
For an individual p which represents the grammar G,=(N,, Z, P,, S) we
define
0, if there exists we §_ accepted by G,

f(p)= Cl'fl(p)-i-cz'fz(p)+c3'f3(p)+c4~f4(p)

¢+, tete,

, otherwise

‘{we S,

wer}

fi(p)=

f P)=7—7>
.(p) e,
where NP, is the set of non-zero variables from p, ¢, ¢», ¢3, ¢4 — the fixed
constants chosen according to the importance of functions 17,..., f3.
The introduction of components 3 and 4 (additional ones, as compared to [3])
allow for a better selection of grammars.

Generating the initial population

In the case of random generation of individuals, as used by Sakakibara, there
exists a risk of lack of individuals with non-zero fitness function. In our
algorithm we use a different approach. For each word in the representative
sample one derivation path is randomly chosen. The nonterminals from this
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derivation appear in the individuals, other variables are equal to 0. This
procedure is repeated PopulationSize times. To speed up the process of learning
we expand the process of derivation path generation by adding some probability
productions which lead to loops characteristic of stack operations in the
pushdown automata:
— X—ZY, Y-XV (and similarly, X—YZ, Y—VX),
— X—ZY, Y- VX (and similarly, X—YZ, Y—>XV).
where X, Y,Z, VeN, x,w,y,v,zeZ* and nelN.

Both types of rules are characteristic of the context free languages with the
same number of fixed subwords.

Genetic operators

— Crossover of two individuals means either an exchange or merge of two
derivations of a word from R;. In the case of exchange, we select randomly a
word, and appropriate parts of individuals are exchanged. In the case of
merging two derivations, all null variables in random derivation in one
individual are replaced by corresponding non-null variables in the second
one,

— Mutation of an individual — all occurrences of two randomly chosen
nonterminals are replaced by a randomly chosen one of them,

— Mutation with erasing — means deleting one or all occurrences of a randomly
chosen nonterminal,

— Mutation with a new path added — for a randomly chosen word from R. one
new derivation is added (similarly to adding path in generating a new
population process).

‘Die process’

The population ages until the maximal age MaxW is achieved. For each
individual the chance to survive is proportional to (MaxW — Age)/MaxW. When a
new individual is created then its age is defined as O in order to survive at least
one generation. The best individual in the population survives no matter what
age it is.

‘War/disease process’

As follows from the above the population size can vary. In each generation
the individuals with the fitness value equal 0 are eliminated from the population.
It is similar, for individuals exceeding the maximal age. In the case when the
size of the population is bigger than PopulationSize the war/disease process is
performed which means eliminating the weakest individuals.
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3.2. Learning algorithm using a modified individual structure

The algorithm described above proved successful in testing several
benchmark context-free languages. New challenge was set by the international
contest Omphalos Competition in 2004 [9] (http://www.irisa.fr/Omphalos/),
where the context-free inference problem was defined for more complicated and
complex languages with a bigger set of nonterminals and productions.

Since the smallest language of the contest was described by 255 positive
words and 535 negative words over a 5-symbol alphabet {b,c,d,e,f} with the
maximal length of 64 symbols for words in S,, our algorithm of section 3.1
proved to be excessively time and space consuming. The following
modifications of the algorithm were introduced.

A modified structure of an individual

We assume that the length of a word from S does not exceed 255 and there
are not more than 255 nonterminals in the grammar (both assumptions seem to
be reasonable). Moreover, because of the larger size of S;, we omit the initial
process of selecting a minimal pseudo-representative sample, which is in this
case more time-consuming and less effective. We start with the assignment
R.=S.. Then for each word weR, we will store one derivation path in an
individual using 2*(|w|-1)-1 bytes in the following way. The first |w|-1 bytes are
used to store the structure of a selected path and in the remaining |w|-2 bytes we
remember all the respective nonterminals.

For the word aabbcc generated by the grammar G¢ from example 2 we have:

[sfalafe]o[s]xf[r]x]

which corresponds to the following tabular representation:

1 2 3 4 5 6

6 ----5[5]

5 ___S[4]

4 --X[3]

3 Y[]- - - -

2 - X[1] - - -

1 A A B B C c |
a a b b c c

An individual in the population, as before, contains the representation of all
words from R..

To compare the sizes of individuals in two versions of the algorithm see the
table below. In the table we compare the number of bytes needed to store a
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derivation path for one word w of the length |w| in the first and second

algorithms.
W] 2346|810 15] 20 | 25 30 40 56
First
. 1| 4]10]35]84] 165|560 | 1330 | 2600 | 4495 | 10660 | 29260
algorithm
Second |y 3l s g |13 17 [ 27| 37 | 47 | 7 77 109
algorithm

Generating the initial population

Since bigger representative samples describe richer grammars with longer
production sets the previous method of generating individuals might lead to
many grammars with the zero fitness value. Such individuals are useless in the
genetic algorithm. Therefore the procedure of generating an individual is as
follows:

1. find a random derivation path for a word from R. and calculate the fitness of
the individual

1.1.if the fitness is non-zero then continue step 1 for the next word from R,

1.2.otherwise, exchange the nonterminals in the added derivation for those

which were not used in individual yet and calculate the fitness

1.2.1. if the fitness is non-zero then continue step 1 for the next word
from R,

1.2.2. otherwise, we omit the derivation of this word in the individual and
continue step 1 for the next word from R

Genetic operations

— Crossover of two individuals is performed similarly to version 1, thus for a
randomly chosen word from R, appropriate parts of derivations are
exchanged.

— Mutation and mutation with erasing affect only the part of an individual
containing the nonterminals in order to sustain the structure of the derivation
path.

4. Some results of computer experiments
4.1. Results for the algorithm from section 3.1

The experiments were performed for several context-free languages treated as
typical or difficult by the community (benchmark problems from [2,3]). We
assumed that terminal productions are fixed. For example for the alphabet
{a,b,c} the productions A—a, B—b, C—c are fixed. Some of the results are
listed bellow.
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1) Context free language L,={a"b"c": n,m > 1}
Si={welL, : w| <8}, S={weXZ* : weL A w| <10}

Pseudo-representative sample | Generation Grammar
{abcc,aabbc,aabbcc} 15 S—SC|XC, X— YB|AB, Y— AX
2 | {aabbcc} 0" §—XC, C—~ CC, X— YB|AB, Y —
AX
3 | {abc,aabbc,aabbcc} 5 S—XC, C—~ CC, X— AY | 4B, Y —~
XB

* grammar generated as an individual in the initial population

Since for each grammar more than one experiment was performed below we
present the final grammar for the appropriate generation step.
2) Regular language Ly={ac" :m>1} U {bc" :m > 1}
Generation: 0
Grammar: S - SC | AC | BC
3) Context-free language L;={weX* : #,w=#w}, X={a,b}
Generation: 1, 7
Grammar: S — AB | BA, A —> AS, B— BS
4) Context-free language Ly={ww" : weZ*}, Z={a,b}
Generation: 6, 30
Grammar: S —> XB | AA | BB | YA, X —> BS, Y — AS
5) Context-free language Ls—{(,)}* — the language of proper parentheses
Terminal productions: 4 — (, B — )
Generation: 2, 4, 11
Grammar: S — AB, A — AS | SA4
6) Context-free grammar Lg={weX* : #w=2#,w}, Z={a,b}
Generation: 2, 30, 87
Grammar: S > BX | XB | YA, X —> A4, Y —> AB,B — SB, A — SA4

4.2. Results for the algorithm from section 3.2

We will describe the results obtained for test 1 from the Omphalos

Competition considered as a benchmark provider.

1. The first step aimed at generating a grammar deriving all 255 positive
examples using fewer than 255 nonterminals (estimated maximum size of
nonterminal set is 10524). In the 761 generation we found a grammar which
accepted all positive examples, rejected all negative examples and used 102
nonterminals and 349 productions. What might be interesting is that the
grammar found in the 194 generation accepted 254 positive words and it
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needed about 500 further generations to correct the grammar so that all 255
positive words were accepted.

. The objective of the second step was to minimize the number of nonterminals

and productions. In the 3916 generation the grammar with 35 nonterminals
and 114 productions was found. Since there was no progress in the next 1460
generations the experiment was terminated. The obtained grammar was tested
on 518 words offered by the Omphalos Competition webpage and the results
were not correct for all of them. Unfortunately, the webpage does not offer
the final grammar to compare with our result. Nevertheless, the grammar
found by our algorithm classifies correctly all positive and negative examples,
and is strictly context-free (it includes self-embedding productions [10], so it
isn’t a regular grammar).

5. Summary and conclusions

The results obtained so far seem encouraging. The modifications introduced

for the second algorithm that is economizing on the length of the individual, the
method of generating of the initial population and the introduction of an
improved genetic algorithm allowed to experiment with rich and difficult data
sets. There is still space for the improvement, specially the careful selection of a
minimal representative sample which was not performed in the second version
of the algorithm and might prove useful. These conclusions will be the
motivation for future work.
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