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Abstract
In this paper we compare computational power of two models of analog and classical
computers. As a model of analog computer we use the model proposed by Rubel in 1993 called the
Extended Analog Computer (EAC) while as a model of classical computer, the Turing machines.
Showing that the Extended Analog Computer can robustly generate result of any Turing machine
we use the method of simulation proposed by D.S. Graga, M.L. Campagnolo and J. Buescu [1] in
2005.

1. Introduction

In the theory of analog computation two different families of models of
analog computation that come from different behaviors of computation
processes in time have been considered. The first family includes the models of
computation on real numbers but in discrete time. These are, for example, the
Analog Recurrent Neural Network [2] and the machines of Blum-Shub-Smale
[3]. The second case are the models of computation on real numbers and in
continuous time. In this scope the important model is the General Purpose
Analog Computer proposed by Shannon in 1941. This model is able to generate
all the differentially algebraic (DA) functions, and it is built from some units
connected together. There also exists an extension of this model called the
Extended Analog Computer. This model was defined by Rubel in 1993 [4] and
was proposed as a model of a human brain. In this work we are interested in
comparison of the computational power of the EAC and the Turing machine.

P. Koiran and C. Moore [5] showed that finite dimensional analytic maps are
capable of simulating the transition function of an arbitrary Turing machine.
These maps can simulate one step of the transition function in this manner that
some computational hybrid system is used, which is continuous with respect to
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the state space, but evolves discretely in time. Another approach has been given
by simulation of the evolution of the Turing machine with continuous flows in
IR" [6,7]. The whole nonanalytic form of an iteration of the map that simulates
the transition function of the Turing machine was proposed in [§8]. Moreover,
itis known that the analytic differentially algebraic functions, which include
most of usual mathematical analytic functions, are not closed under iteration [9].
It suggests that continuous-time computational models, which are closed under
iteration, must contain some non-analytic functions. However, when we think
about the iteration functions in the vicinity of integrals we can use the system of
differential equations y' = gy(y,f) proposed by D.S. Graga, M.L. Campagnolo,
J. Buescu in [10]. Here gy, is analytic and ¢ represents the time steps of the
Turing machine, in this case this system is able to simulate robustly the Turing
machine.

2. Preliminaries

In the classical theory of computability several models of computation on
natural numbers have been considered [11]. One of the most important ones is
the Turing machine [11]. We will use it here in the standard way. The Turing
machine is defined as a following tuple: (Z, O, J, qo, F), where X is a set of type
symbols and Q is a set of states, 0: 2 xQ —> X x Q x {—1,0,+1} is a partial
function called a transition function, and —1 and +1 are the symbols which
indicate the left and the right side movement of the head and 0 indicates no
move of the head, ¢, and F' denote the initial and the final states, respectively.

Next we recall some part of the theory of analog computation. We will start
from the basic continuous time model of analog computation called the General
Purpose Analog Computer [12]. In this model we have five based units
connected together into various shapes of circuits. The units used in the GPAC
are the following: Constant multiplier, Adder, Multiplier, Constant function and
Integrator — a unit with a setting for the initial conditions — two constants a and
tp; two inputs — unary functions u, v; one output — the Riemann-Stieljes integral

/1t.J' u(x)dv(x)+a. Pour-El shows, although with some corrections made by
lo

Lipshitz and Rubel in [13], the following:

Theorem 1. Ify is generable on I by a GPAC, then there is a closed subinterval
1'c I with non-empty interior such that, on I', y is differentially algebraic.

Notice that not every function from the class of the recursive functions
defined over the natural number can be computed by the GPAC, for example

Axn.exp™ (x) [14].
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The main model of this paper is proposed by L.A. Rubel in 1993 and called
Extended Analog Computer (EAC) [4]. The EAC works on a hierarchy of levels.
It has no inputs from the outside, but it has got a finite number of “settings”,
which may be arbitrary real numbers. The outputs of the machine at level (n — 1)
can be used as inputs at level n or higher where by the following operations:
addition, multiplication, composition, inversion, differences, analytic
continuation, solving a differential equation with boundary-value requirements
and taking of limits, next results are generated. At the lowest level, level 0, it
produces real polynomials of any finite number of real variables. However at
level 1, it produces differentially algebraic real-analytic functions (C”) of any
finite number of real variables.

Below there is the definition of the EAC in terms of the real functions. Let us

start with some useful notation of analytical analysis. By y e C“(Q) we mean

that y has an extension of y* to an open supersubset Q" of Q, and y" is real-
analytic on Q. These are the functions that are locally the sum of convergent
power series. This definition is the mathematical description of the definition of
the EAC proposed by Rubel in [4].

Definition 2. The function y e C?(Q), Q2 c IR is generated by an EAC on some

level n, (v € EAC,) if'y is a function, which holds the following conditions:
1. Forn=20
k

y(f): Z Calaz...ak Hx[ai

(oq,05,...04)ed i=1

where Ac N} , ¢ are fixed real constants and X = x,,X,...,X; .

2. Forn >0, y is defined by one of the following methods:

— W X)=u(X)+uxx), where uy, u € EAC,y;

— (X)) =u(X)ux(X), where u, u, € EAC,;

— X)) =v(u(x), uy(x),..., u(Xx)), where v, uy, up, . u; € EAC,1;
V(X)) = y(x) for i = 1,2,..., I, where y(X), yo(X),..y(X) is C° —
functions solution of

fl()_C,yl,yz,...,y]):O
f2 ()_C,yl,yz,...,yl):()

5 (X v 050e050,) =0
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where fi, f>,....f1 € EAC,.;!
aal+a2+...+akf(f)

— w(x) = DAx), where Df =————~~
HE) = DAF) S = i ox

are partial derivatives of f
and f e EAC,;

-y =y*|g, where Q' c Q Qe EAC, ., andy*e EAC,;

— W(X) =V(X) if for vie EAC, is an analytic continuation of v from Q N
Q" 10 all of Q, where v € EAC,, Q € EAC,., and Q N Q'+ &

— y(X ) is a solution of equations Fi(X : y, yi, V2,..., ) =0, for i = 1,... .,k on

a set Q which are subject to certain boundary values requirements’, where

Qe EAC,.,, F;e EAC,., andy,, y,,..., y; are the partial derivatives of y;

Sforall x, €,

y(%)=_lim_f(%),
aal+a2+.u+aky(f) _ hm aa,+a2+...akf()—c)

OX[1 0%y ..., 0xF X% Teh Ox[",OX5? ..., OXF*

where QeFEAC,., is a subset of 0A (is the edge of N), Q € EAC,., an f € EAC,
defined on A.

The Extend Analog Computer defined above has some interesting properties.
The EAC is that one which expands the scope of the General Purpose Analog
Computer (GPAC) [12]. This machine can compute all the functions which can
be computed by the GPAC and all the differential algebraic functions. In
particular the EAC can compute some base analytic functions like the
exponential function or the trigonometric functions [4].

Example 3. The pair of trigonometric functions (sin, cos) can be obtained by an
EAC by solving the following differential equations with boundary-value
requirements:

sin(0) =0, cos(0) = 1, cos(0) - d,sin(x) = 0, sin(0) + J,cos(x) = 0.

From Theorem 1 it follows that all functions generated by the GPAC are the
differentially algebraic functions which can be obtained, by the EAC on level 1.

On the higher levels of the EAC one can obtain such functions as I'-Eulers
function or £-Riemmans function [4], which cannot be obtained by the GPAC.

'We require these functions to be well-defined C” function on Q. For example the equation xy
— 1 =0 has the solution y = 1/x which is not well-defined on R (because it is not defined for x = 0)
but it is well-defined on the intervals (—,0) and (0,) . So y = 1/x is not EAC computable on R
but is EAC computable on (—0,0) or on (0,00) .

2For example: y = y, on a piece y of the boundary of Q, where we use only functions y, €
EAC, ..
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Moreover, it is shown in [4] that the solution of the Dirichlet’s problem for the
Laplace’s equation in the unit disc can be computed by the EAC.

Moreover, the EAC is required to produce unique outputs that are close, on a
compact set, to the original unique outputs, when the inputs are slightly varied

[4].
In the following Lemmas some functions of [1], which will be useful for a
simulation of the Turing machine by EAC, are presented.

Lemma 4. Let n € IN and let € € (0, 1/2). Then there is a factor ¢, > 0 such that,

for Vxe [n -G.,n+g, ] = |v(x) —n mod 10| <¢& and v is uniformly continuous

in R, the EAC-computable function given by V(x)=a0+ascos(7rx)

4 . .
+(Zajcos(%j+bjsin(%n, where aq, ..., asby, ..., bs are computable
j=1

coefficients that can be obtained by solving a system of linear equations.

The function from the above lemma is an analytic extension v: R — IR of the
function g: IN — IN defined by g(n) = n mod 10. From the form of v we can see
easily that it is EAC-computable as a composition of the sum function and the
trigonometric functions.

Lemma 5. Let n € Z and let € € [0, 1/2). Then there is some contracting factor
Ae > 0 such that, for V5e[—8,8], a(n+5)—n|£lg53 and o is the EAC-

computable function given by a(x) =x—0.2sin (27rx) .

The function o is a contraction on the vicinity of integers needed to keep the
error of the simulation under control. Of course o is EAC-computable as a
composition of the difference function and the sinus function.

Lemma 6. Let a € {0,1} and a, y € R satisfying |a—E| <1/4and y> 0. Then
there is a function l: R* — R such that |a -1, (5,y)| <1/y and I, is the EAC-

computable function given by [, (x,y) = lalrctan(4y(x — 1/2)) + % .
V4

*Through the remain part of this paper we suppose that & [0, 1/2) is fixed and that A, is the
corresponding contracting factor given by Lemma 5.
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Lemma 7. Let a € {0,1,2} and a, y € R satisfying |a—c_z| <g and y>2. Let
{0 e<1/4

. Then there is a function l;: R*— R such that
[—10g(4£)/loglg—| e>1/4

|a—l3(c_z, y)|<1/ vy and I3 is the EAC-computable function given by
L(xy)=1, ((a[‘“‘] (x)—l)2 ,3yj(212 (o (x)/2,3y)—1)+1 :

The functions from the above two lemmas are other needed error contracting
functions that control the error for unbounded quantities. The /, function is EAC-
computable as a composition of some base analytic functions (sum, difference,
product) and the arctan function, which is computable by the EAC as the DA
function [4] The /5 function is the EAC computable too as a composition of the
EAC-computable functions.

3

Lemma 8. If |0(,.

5,-‘ <K fori=1, .., nthen

‘al ..a, —a ...En‘ S(‘al —51‘+...+‘an —a, )K"’l.
All above presented lemmas will be used to keep the error under control
during the simulation of the Turing machine.

3. The Turing machine simulation by the EAC
The ideas and concepts related to the simulation due to Graga, Campagnolo
and Buescu of [10] are recalled here. They code configuration of the Turing
machine into a triple (x, y, z) € IN® without loss of generality. They used only 10
symbols, the blank symbol B = 0, and symbols 1,2,...,9. The string
...BBBa ,a ., ...a a,a,...a,BBB...

represents the tape content for a given Turing machine M. The head is reading
symbols a, €{0,1,...,9} for all i. Moreover, M has m states, represented by
numbers 1 to m. In all transitions, the head either moves to the left, moves to the
right, or does not move. For convenience, they consider that if the machine
reaches a halting state it moves to the same configuration. Take
y,=a,+a10+...+a, 10"y, =a_ +a_,10+...+a_ 10"

and let ¢ be the state associated to the current configuration. The triple
(x, y, z) € IN? gives the current configuration of M.

Our intention in this paragraph is to establish the fact that the EAC can use
such simulations of the Turing machine. We want to make this in two steps.
Firstly we need an EAC simulation of one step of the Turing machine. Secondly
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we need an EAC-computable function which iterates the simulation of one step
of Turing machine. Let us cite Theorem 1 from work [10]: Let & IN* — IN be the
transition function of the Turing machine M, under the encoding described
above and let 0 <& <& <1/2. Then 6 admits an analytic extension f;;: R® — R,

robust to perturbations in the following sense: for all f such that || = ||® <0
and for all X, €R’ satisfying ||f0 - X, ||w <&, where x, € IN’ represents an initial

configuration,

179(3) -6 () <e.
Theorem 9. The function fy; defined as above is EAC-computable.

Proof. We will show how to construct f}; with EAC-computable functions.

Suppose that (y1,),,q) describes the present configuration and that (¥,,7,,q)
is an approximation of this configuration. First we will want fM to satisfy the
following condition:

”(ypyz’q)_()_/l’y}z’q)”w Se= Ha(yl’pr)_J?M ()71’?296)”00 s€.
Let a( be the symbol being actually read by the Turing machine M. Then W)
log(¢,/¢€) }4

log A,
where v and o are the functions from Lemma 4 and Lemma 5. So

= ao. Since |y1—)71|£€ then ao—voa[l]()_/l)‘ég, with l:{

;zvoa[”()_/l) gives us an approximation of the symbol being currently read.
Similarly, voc!!(7,) gives an approximation of @, with the error bounded by

& These approximations can be computed for constant / by certain EAC.
Now we determine the next state. Recall that m denotes the number of states
and £ = 10 is the number of symbols. This can be done as follows:

log(10m°K™7 (m +8))
—log A,

with n:{ , K :max{9.5,m+%}, where ¢, ; is the state that

follows symbol i and state j. With this choice for n we have
9‘y—0'[”] (?)+(m—l)‘q o ((7)” < e;"/lOmzK'"+7 . From this and Lemma 8 we

conclude that <g.

qnext - qnext

4 (x—| =min {n € Z: x<n}
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The map that returns the next state is defined by the polynomial interpolation
with the function o composed of # times, so can be computed by the EAC.
To determine the symbol to be written on the tape and the direction of the

move of the head we use similar constructions. We mark then as s and /ex

next
(where 4 =0 denotes a move to the left, # =1 denotes a "no move", and 7 =2
denotes a move to the right).
To update the tape contents we define the following functions P;, P,, P,
which are intended to approximate the tape contents after the head moves left,
does not move, or moves right, respectively. Let H be an additional

approximation of % _ determined later. Then, the next value of y;, can be

next

approximated by
371"“’=P1%(1—H)(2—H)+PzH(2—H)+P{—%}H(l—ﬂ),
with
_10( [p]( )+O-[p](§next)_o-[p](.}_/))+o-[ oy ool (J’z)
P, =6 (3,)+ 0" (5, ) -0 ov oot (3),

b o (7)o" (7)
10
where peN is sufficiently large. We have problem because P, depends on y,,

b

which is not a bounded value. Thus, if we simply take H =/ __ , the error of the

next
term (1 — H)(2 — H)/2 is arbitrary amplified when this term is multiplied by P;.
To mark sufficiently good H, proportional to y; we use the functions /, and /;
from Lemma 6 and Lemma 7 and put:

H =1,(h,,,10000(5, +1/2)+2)

next >

next next

—N

Moreover, P, P, and P; are defined as a composition of the EAC—computable
functions so they are EAC-computable too. Similarly for the left side of the tape,

Using the same argument for P, and P;, we conclude that

HEX[ next

— ),
Finally, f,, : R® — R’ is defined by 7, (yl,yz,q) = (7T Gt ) -
Let 0<5<e& and let ieN satisfies ol (S)S &—0. Define a map
f,, =c o f,, . Then, if xo € IN® is an initial configuration,

% = o, Sg:>||fM (fo)—e(xo)"m <e-6.

we can define y,*" such that |y
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Thus, by the triangular inequality, if ||f0 —x0||w < ¢, then for || f=fu ||w <0

we have:
lr ) -0(x)|, <|lr &) £ &), +]f () -0(x)], s6+(c-6)=¢.
This proves the result for j=1 and all the constructed elements are EAC-
computable. For j > 1, we proceed by an induction.
U
The above theorem states that there exists the EAC-computable function

which can simulate one step of the Turing machine.
And now we can write our main result.

Theorem 10. For any Turing machine there exist some EAC which can robustly
simulate it.

Proof. This proof is based on the construction from [10]. Let & IN* — IN be the
transition function of the Turing machine M, under the encoding described
above. To iterate the function & we can use a pair of functions to control the
evolution of two simulation variables z;, z,. Both simulation variables have
values close to xq at £ = 0.

The first variable is iterated during half of a unit period while the second
remains approximately constant, its derivative is kept close to zero by a control
function. Then, the first variable remains controlled during the following half
unit period of time and the second variable is brought up close to it and at time
¢t = 1 both variables have values close to &xy).

This process can be repeated an arbitrary number of times, keeping the error
under control because there exists an analytic function robust to error that
simulates 6. We think of the following system of the differential equations:

Z; =¢ (Zl —fu oo™ (Zz ))3 o, (l‘,Zl,Zz),
z,=c, (22 ~o"(z, ))3 D, (t,2,2,),
with the initial conditions z, (0) =z, (0) =X, , where

®,(t,2,,2,) =1, (s(t),c—yl(zl ~ fyed(z)) +%+10J’

®,(1,2,,2,) =1, [s(—t),%(zz ~o"(z,)) +C_2+10J,

Vv
and ¢y, ¢, % m and n are some constants; s is the EAC-computable control
function of the form S(t)= 1/ 2(sin2(27zt)+ sin(27zz‘)). The function fj, is the
EAC-computable extension of & from Theorem 9 where @ is the transition
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function of the Turing machine M and o, /, and /; are the functions from
Lemmas from section 2. These functions keep the error under control. This

construction guarantees that Z'2 is sufficiently small on [0, 1/2] and, therefore,
|z,(1/2)-x,|, <1/2,
and
|2, (172)-0(x,)|, <&
For interval [1/2, 1] the roles of z; and z, are switched. This process can be
repeated for z; and z, on subsequent intervals and we obtain for j € IN,
t € [j,j+ 1/2] the following result: sz (¥) —H[j](xo)“w <n, where 0 <n<1/2.

Because all the above used functions are EAC-computable and because the EAC
can generate the functions z; and z, as solutions of the differential equationsl

written above with the initial conditions z (0)=z,(0)=X,, where
||f0 —x0||w <¢ for0<e<1/4.

Suppose that z(7) is the function which has the following quality
“z(t) —9[-”(x0)H <n forj e N, ift e [j, j+ 1/2]. Since from the statement, that

if the Turing machine reaches a halting state it moves to the same configuration,
it is enough to take lim Z(l/ t) to obtain the EAC-computable function, which
t—0

robustly simulates computations of the Turing machine with the transition
function 6.
U

Conclusion

In this manner we obtain a positive answer to the question given by Rubel in
[4] “whether the digital computer can be simulated by the EAC”. There still
remains the open question of an existence of some simulation of the EAC by
digital computer and also the interesting question about closing the EAC with
regard to the iteration.
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