
Annales UMCS Informatica AI IX, 1 (2009) 27–34

DOI: 10.2478/v10065-009-0003-2

Parallelization methodology and analysis of benefits

from the TRQR program with parallel computing

Marcin Brzuszek1, Anna Sasak1, Marcin Turek2

1 Institute of Computer Science, Maria Curie Sklodowska University,

pl. M. Curie-SkÃlodowskiej 1, 20-031 Lublin, Poland
2 Institute of Physics, Maria Curie Sklodowska University,

pl. M. Curie-SkÃlodowskiej 1, 20-031 Lublin, Poland

Abstract

Benefits from parallelization of sequential TRQR application were analyzed and presented in

this paper. The TRQR program based on the Particle–In–Cell method is used in simulations of

particles trajectories in the electromagnetic field. To estimate the performance of parallelized

program some formal and informal measures were provided. Analysis was based on three main

issues. First - if and how parallel computing influenced program efficiency. Secondly, the way

that system reliability increases and thirdly, how this solution improves the extent to which

the available hardware computing power is used. The paper also presents the methodology

that was used for code re-engineering in order to get a parallel version on the basis of its

sequential version.

1. Introduction

There exist plenty of programs that simulate phenomena in different scientific

fields. Those programs, designed to work on one-processor machines, were often

developed for many years. They were designed to model and simulate reality,

which was often functionally limited by computing power of available hardware.

A lot of them due to their specifics are and for a long time will be sequential.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 21:15:43

UM
CS

28 Marcin Brzuszek, Anna Sasak . . .

On the other hand, some of them are flexible enough to be parallelized. A good

example of those programs is TRQR. There are defined many standards that

allow programmers to migrate their applications between different computing

environments in a relatively easy way. Yet, there exist a lot of aspects that

no homogeneous standards were defined for. One of them is the problem of

parallelizing the existing sequential code which was not planned to be a basis

for future parallel version. The substantial issue is then the choice of proper

technique which will be applied in the parallelization process. The chosen

technique should not only be efficient but also provide freedom of further code

modifications. The TRQR parallelization process is based on methodology

presented in paper [1].

2. TRQR description

TRQR is based on the Particle–In–Cell (PIC) method that simulates moves

of charge particles in the electromagnetic field. The program calculates particles

density distribution for chosen parts of ion sources. It also calculates potential

distribution in the ion source, analyses particles behaviour in the electromag-

netic field and describes the process of beams from the source extraction. It

is planned to use such kinds of sources that produce beams of negative ions

which, after neutralization, could be used to warm up plasma in the built ther-

monuclear reactor ITER. Fig. 1 presents the TRQR program scheme.

Fig. 1. Simplified activity diagram of the TRQR program

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 21:15:43

UM
CS

Parallelization methodology and analysis of benefits . . . 29

This is a traditional example of simulation of a large number of bodies (so

called N–Body problem) [2]. In this case, ”body” means a macro–particle,

representing a lot of real particles of the same kind (electrons or ions). In spite

of the PIC assumption that one does not have to follow all real particles, the

program has to calculate trajectories for even hundreds of millions of macro–

particles and it requires immense time on a single–processor system. To improve

reliability of the simulated phenomenon, the program should be provided with

some additional functions such as: particles collisions regard, ionization when

surface is being hit regard, neutral particles in plasma regard, which would

cause the necessity of providing more computing power.

3. Parallelization of sequential code process

The parallelization process was based on the methodology presented in paper

[1] and illustrated in Fig. 2. It describes the process of gaining an effective,

parallel version of the existing sequential program.

Fig. 2. Methodology for parallelizing sequential code diagram [1]

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 21:15:43

UM
CS

30 Marcin Brzuszek, Anna Sasak . . .

The first step in re-engineering is a reverse engineering stage. This step

should make full code structure, variables dependencies and control and data

flow analysis. In practice, this step is an accurate analysis and source code re-

construction, whose aim is to understand the programs structure. As a result of

the first step, a reverse engineered for parallelization design document is being

created. That study gives basis for further parallelization process. Next steps

of the adopted methodology are program parallel design and implementation.

Designing includes: creating parallelization scheme, data division, isolation of

calculation and communication scheme. Implementation means choosing proper

parallel middle-ware standard, defining communication method, message types

and other calculation coordination related aspects. Designing and implemen-

tation are cyclic processes which are repeated until user’s performance criteria

will be fulfilled. In the case when there is not one algorithm but full program, as

a criterion, depending on users’ requirements, many different measures can be

adopted. In the case of TRQR program parallel design and implementation still

remain open. It applies for choosing pieces of code that will be parallelized,

choosing problems decomposition method and selecting parallel computation

standards. In particular, the choice should be made between implementation

for computers with shared or distributed memory.

4. Program performance upgrade

Direct advantage of program parallelization is more effective time use which

relates to time assigned to simulation process and therefore improves program

performance. Many different elements influence this process in a more or less

direct way. For the TRQR program they can be categorized as follows:

1. possibility of running many copies of the same program for different data sets

in parallel on separate computers (or separate processors). Due to complexity

of a simulated physical phenomenon, it is required to fix value of many

program parameters that describe different physical values. Assigning those

values influences process accuracy. There must be carry out some shorter

and longer simulations to fix them,

2. increasing program execution speed for those input data which have been

calculated so far - it is assumed that there exist such data sets that give

acceptable results in acceptable simulation time,

3. possibility of gaining a more accurate result by using different input data

sets or by fixing other program parameters – it is assumed that there exist

such input data sets for which more accurate results are obtained but the

simulation time they need makes this simulation useless,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 21:15:43

UM
CS

Parallelization methodology and analysis of benefits . . . 31

4. possibility of solving a wider problem by adding new, more time consuming

functions – it is assumed that program is a functional tool, although due

to complexity of the simulated process, it contains numerous generalizations

and simplifications and the implemented model does not cover all physical

phenomena,

5. possibility of making simulation simultaneously with the real–time visual-

ization process – until the process of visualization is based on partial results

saved in files. In all those aspects simulation time influences program per-

formance.

5. Increasing stage of available hardware use

Another benefit from parallelizing a sequential version is increasing the stage

that available hardware is being used. Unfortunately, still only great research

and development centers own computers with significant computing power.

Those centers assign great funds for development of parallel computing sys-

tems. Access to those centers computing power almost always requires certain

payment for every minute of processor work. Additional limitations are queues,

which especially with test simulations could be nagging. The functions which

those centers perform and the hardware they offer are undeniable. On the other

hand, due to development of available hardware, a remarkable solution should

be having parallel computing system of one’s own. After appearance of mul-

ticore PCs (and the range of this phenomenon), it is obvious that the usage

of computing power of available hardware will be increasing. It makes us re-

consider programming aspects and search new solutions for this new upcoming

reality [3].

As for accomplishment of parallelism different presumptions could be made.

First, it can be expected that technology development will go in such a direc-

tion that all fine–grained parallel work will be moved to hardware. Secondly,

some work can be transferred to compiler and then it can be expected on that

this compiler will transform the code in such a way that our program will make

impression, at least partially, of parallel application. Unfortunately, apart from

a few cases consisting of simple data structures, application created as sequen-

tial even with the best implemented compilers is not able to give expected

performance. There is of course one more way left which means parallel ap-

plication achievement by programmer. The best situation is when a program

is being made from scratch with the adopted guideline to be parallel. In the

case when the expanded and optimized sequential version already exists, there

could occur some problems with adopting this program to parallel environment.

That is why certain methodology is required that would simplify this process.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 21:15:43

UM
CS

32 Marcin Brzuszek, Anna Sasak . . .

Programmer must make many decisions: what tools, standards, mechanism to

use, whether all program or maybe only the most time consuming fragments

should be parallel. One way or another, in the case of existing sequential ap-

plications it requires code re-engineering with previous work cost and benefits

analysis.

6. System reliability improvement

In the case of many parallel system usage, much more important than per-

formance is high reliability. It is mainly connected with the necessity of stable

and trouble-free work. In the case of such scientific programs as TRQR it is

not necessary. It is important though, that the hardware used for simulations is

available whenever needed. It is especially important for test simulations, per-

formed to fix proper parameters, very often only for certain program pieces. The

own multicore PC, in spite of limited computing power, provides some extent of

independence. Not to mention that on such computer, in contrary to available

multicore machines or clusters (for example local cluster from the Clusterix

system) there can be placed numerous tools to analyze program performance,

examine processors load and make some real-time visualizations. Well known

and popular standards such as MPI (standard based on passing messages

between computational nodes) or OpenMP (standard for programming com-

puters with shared memory) were adopted in the TRQR parallelization which

gives availability to easy code migrations between different computing environ-

ments. It also allows to execute a program on different computers with division

for more or less demanding simulations as far as time and number of particles

are concerned.

7. Performance criteria

Fundamental performance criterion that was adopted while the TRQR pro-

gram parallelization is a speedup factor that is described by the formula: S(p) =
T (1)
T (p) , and efficiency E(p) = T (1)

T (p)·p = S(p)
p where p stands for a number of proces-

sors, T (1) and T (p) – the simulation time on one or p processors (adequately)

[2]. Next to this formal criterion, during the whole process, a very important

part was taken by a formal but also very relative measure which is simulation

time. During designing and test simulations, it is often decided that working

on better (in means of acceleration) solution is not cost–effective enough as pre-

dictable benefits in contrary to required development time are not significant

enough. Before starting the sequential version parallelization process, there has

to be done some costs analysis and some balance has to be adopted between

how much time is planned for creating a stable parallel code version and how

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 21:15:43

UM
CS

Parallelization methodology and analysis of benefits . . . 33

much work should be dedicated to its efficiency. The whole time human factor

is of great importance here. It is the human who analyses gained results and

estimates their usefulness. Yet, still one of indirect factors affecting those de-

cisions is simulation time. Sometimes when the program is being analyzed, it

is known in advance that it would take a lot of time. In such a situation it is

hard to compare work time with the gained results but still we believe that the

experience and conclusion we gain would give a good basis for further studies.

8. Parallel version performance analysis

The direct factor influencing simulation time in the TRQR program is plasma

density n, which stands for a number of computing particles in one space unit.

The factor n can take values in range 109 − 1011 cm−3. According to the

equation Nrp = n·Vt
Nm

, where Nm stands for a number of computing particles

in space Vt, plasma density influences the actual number of particles building

one computing particle. Obviously, the smaller number of real particles in

one computing particle is, the more precise reality picture gained from the

results is. Higher plasma density forces usage of more computing particles

whose trajectories are being analyzed [4].

In the program we managed to parallelize most of critical time pieces, while

minimizing communication and synchronization of processes. Part of comput-

ing, which we did not get to parallelize, covers less than 10% of all sequential

program [5]. According to the Amdahl’s law we should not get acceleration

higher than 10 times [2], yet acceleration we managed to acquire exceeds the

values resulting from the Amdahl’s law. It results from the fact that the size

of the problem, which in the case of TRQR means a number of computational

particles, can be calibrated according to the processors number. Let us as-

sume that the sequential program N stands for a number of computing units,

and T (1) means the simulation time. If the particles number is increased k

times, and at the same time the number of processors is increased to k, then

simulation time theoretically should come to T (1) as well [2]. According to

the Gustafson’s law every problem that is big enough can be effectively par-

allelized. The results gained for TRQR match this theory perfectly. In the

re–engineering process there were developed the program s versions that give

acceptable results. Thus this does not excuse us from further parallelization

studies as there exist a number of functionalities which included in the program

can force program structures reorganization.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 21:15:43

UM
CS

34 Marcin Brzuszek, Anna Sasak . . .

9. Conclusions

The essential and most measurable benefit acquired from the TRQR program

parallelization is possibility of significant simulation time reduction. It results

from the basic criteria which is acceleration and through–out this it gives plenty

of further research possibilities. In the re–engineering process there are created

new programs versions. Acceleration values gained for the code parallelization

are possible mainly due to problem scalability and deep reverse engineering.

Program is not fully functional yet. There exists a certain number of options

adding which will require further re–engineering of code. The tool that will be

adopted for this process will still be methodology presented in paper [1].

References

[1] Andersen P.H., Pizzi J., Zhu R., Cao Y., Evaluation of a Methodology for the Reverse

Engineering and Parallelization of Sequential Code, PDSE 1999: 124-133.

[2] Wilkinson B., Allen M., Parallel programming, Techniques and Applications Using Net-

worked Workstations and Parallel Computers, Prentice Hall, 1999.

[3] Gorder P.F., Multicore Processors for Science and Engineering, IEEE Computing in

Science and Engineering, 2007.

[4] Brzuszek M., Turek M., Sielanko J., Parallelization of the ”Particle-in-Cell” (PIC) den-

sity calculations in plasma computer simulations, IBIZA, 2006.

[5] Turek M., Brzuszek M., Sielanko J., An MPI-based parallel code for high performance

3–D particle–in–cell ion source plasma simulation, IBIZA, 2007.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/02/2026 21:15:43

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

