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Abstract

Optimisation of distribution parameters is a very common problem. There are many sorts
of distributions which can be used to model environment processes, biological functions or
graphical data. However, it is common that parameters of those distribution may be, partially
or completely unknown. Mixture models composed of a few distributions are easier to solve.
In such a case simple estimation methods may be used to obtain results. Usually models
are composed of several distributions. Those distributions may be of the same or different
type. Such models are called mixture models. Finding their parameters may be complicated.
Usually in such cases iterative methods need to be used. The paper gives a brief survey of
algorithms designed for solving mixtures of distributions and problems connected with their
usage.

One of the most common method used to obtain mixture model parameters is Expectation-
Maximization (EM) algorithm. EM is the iterative algorithm performing maximum likelihood
estimation. The authors present the results of adjusting the Gaussian mixture models to
the data. It is done with the usage of EM algorithm. The article gives advantages and
disadvantages of EM algorithm. Improvements of EM applied in the case of large data are
also presented. They help increase efficiency and decrease operation time of the algorithm.
Another considered issue is the problem of optimal input parameters selection and its influence

on the adjustment results. The authors also present algorithm performance observations.

*E-mail address: gosiap@pluton.pol.lublin.pl
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1. Introduction

Mixture models [1] are popular methods of data-sets presentation and anal-

ysis. The most common application of mixture models are natural phenomena,
biological processes, graphical data, damaged and incomplete data [2, 3], classi-
fication problems. Single distribution usually represents one process. However,
if a sequence of processes occurs, several distributions may be combined. Genes
reactions on tissues damage exemplify this. Activation of one set of genes makes
the other react. Genes which do not take part in the process have small weight
and their rate of activity does not change.
The most popular probability distribution is a Gaussian one. According to
the Central Limit Theorem if a number of sample distribution is huge and its
variance is finite, distribution statistics may be approximated by the Gaussian
function [4].

The single Gaussian distribution (Fig. 1) has two parameters: mean and
standard deviation. The distribution is given by the formula:
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Fig. 1. Gaussian distribution [5]

The mixture model, consisting of several Gaussian components is represented
by the formula:

K
fmix(x7a17' < K, Py - 7pK) = Zakfk(x7pk)
k=1
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where
Qi ...,0K,P1,- .., PK — Mixture parameters
K
ai,...,ax — weights Zak =1
k=1

frx(z, pr) — density distribution function.

One can notice that apart from the parameters of Gaussian components, the
mixture model must be also described by weights. Every Gaussian component
in the model has its own weight, which determines height and importance of
this single distribution.

Fig. 2 illustrates the influence of parameter values on simple, composed of two
Gaussians mixture model. The stronger line identifies the envelope, the thinner
- single Gaussian. Small difference between the means of components can cause
missing or merging Gaussians (Fig. 2c¢). Weights have also strong influence on
the model characteristics. Gaussians with small weights are harder to model
and solve (Fig. 2b). Small weights in combination with similar means may lead
to more complicated model formation (Fig. 2d).
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Fig. 2. Simple examples of Gaussian mixtures

2. Mixture model parameters

One of the most problematic issues concerned with mixture models is esti-
mation of their parameters. It is a hard task due to the number and properties
of the estimated parameters. Fig. 3 illustrates the example of typical model.

There are several optimization methods which can be used to solve the prob-
lem of unknown parameters. The best of them are based on iterative algorithms.
Such methods are Newton, quasi-Newton or gradient ones [6]. However, those
algorithms need partial derivatives vector, which makes them hard to use due
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Fig. 3. Gaussian mixture model

to complicated calculations. However, they may be used as an assistance for
other algorithms.

The expectation-Maximization algorithm [7] is the most common method of
computing mixture model parameters. It is an iterative method, composed of
two main steps: Expectation (E) and Maximization (M). The standard version
of EM algorithm allows for obtaining initial values from randomization. The
first step, E, is responsible for calculation of probability value [8]:

old)

p () = B0 ot
s -
> it OF fie (2, pO1d)

where

P <k\xn, pOld) — probability, that sample x,, belongs to kth component of

mixture

p®? — set of input parameters

ol — weight of k' component

Ir (a:n, p°ld) — density distribution function.
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The second step, M, includes calculation of new parameter values. For the
Gaussian mixtures this step is given by formulas [8]:

new Zfzvzl Inp (Mxnapold)

e — L k=1,2,... K
ZnNzlp(anapold)
N 2
(Ugew)Q _ anl (an_ M]:.L(iw) b (k|$n)p0ld)’ k —_ 17 2’ L ’K
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N
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The EM algorithm uses the likelihood function for finding the best possible
results. The likelihood function f(z,,p) is a common way of evaluation used
in the estimation of probability distribution parameters. The function f(x,,p)
describes the likelihood of x, observation. It is a good idea to use Maximum
Likelihood [1] (ML) principle in the process of parameter values calculation.
It states, that the best parameters estimation is the one which is most proba-
ble. The most probable set of parameters is the one, which is computed from
maximizing of the likelihood function [9]. The ML principle is given by:

N
L(p,l‘) = L(p) = f(xlvl‘%"' 7$N7p) = H f(xﬂnp)
n=1
N
L(z1,22,...,2n,p) = In[L(21,22,...,2N,p)] = Zln [f(zn,p)]
n=1

N
5= argmax [ f(an.p)
n=1
To make calculations more efficient, the log-likelihood function [8] is used.
This allows summation instead of multiplication and it does not change the
results because monotonicity of I (z1,z2,....zxN,p) leads to the same location
of maximum as L(p, x) does. The Gaussian interpretation of ML principle is as
follows:

N
1 5 1 2
M:NE T o :NHE_I(JM—N) :

Usage of ML principle [10] gives a certainty of stability. The ML value is
always ascending or stable - it never descends (Fig. 4). It guarantees that there
will be no deterioration during algorithm work regardless of any circumstances.
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Fig. 4. Log likelihood values

3. Characteristics of EM algorithm

Fig. 5 presents the models composed of the parameters obtained from the EM
algorithm. The figures on the left side show an artificially generated model, with
8 - 5 components and the corresponding sample size of 1000. The figures on
the right compare those models with those built on the EM results. For each
model on the right two corresponding runs of EM are shown on the left. The
dotted line illustrates the results of envelopes subtraction.

As Fig. 5 shows, parameters estimation may be a problematic issue. The
examples show that some Gaussians are more difficult to solve than others.
Close nearness of means, in conjunction with similar standard deviation val-
ues may result in merging Gaussians. In such a case flat, stretched Gaussian
occurs to preserve a proper number of components. In other cases, instead of
flat Gaussian, one can find low components with small standard deviations.
This may result in unwanted peaks. Peaks may be also a result of mistaken
estimation of small-weighted component. The examples show the principle: the
smaller weight of Gaussian, the worse match is found. This phenomenon illus-
trates algorithm characteristic - it is easier to solve high-weighted components.
Good estimators of components are found quickly in the first several algorithm
iterations. In most cases the researcher is interested only in high-weighted
component estimation. Low-weighted components need more time to estimate.
However, too high accuracy results in lengthened calculation time and excessive
concentration on the low-weighted components. The next interesting issue is
the shape of envelope subtraction lines, shown in Fig. 5. In all cases these lines
have similar, sinus-shaped look in the areas corresponding to the overlapping
components. This property can be used in error prediction simulations.

Estimation mistakes can be also a result of errors in Maximum Likelihood
principle operation. The ML principle always tries to find global maximum of
likelihood function but sometimes it sticks to a local one [11]. Good illustration
of this process is presented in Fig. 6a. The charts show the dependence of means
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Fig. 5. Parameters estimation results

on standard deviations with consideration of weights. Weights are represented
by the size of circles on the charts. This way of parameters presentation gives
opportunity to check the quality of the obtained results and it makes easy
to match the true model and the estimation parameters. This matching is
important because the EM algorithm does not return estimated parameters in
the same order as they are in the model. This enables matching and measuring
the distance between the true and estimated models, especially when the model
is composed of many elements. the multiple repetition method can be used to
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handle the local maximum problem. It offers to use many ML calculations (for
example 50 or 100) instead of one and choose estimation with the highest value
of ML. Another improvement is to repeat the whole above process many times
and each time draw the best parameters (those corresponding to the highest
likelihood) in the chart. As a result (Fig. 6b) the obtained parameters should
oscillate between on the corresponding parameters of the true model.
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Fig. 6. Mean and standard deviation dependency

Another issue is the influence of the stop criterion choice on the performance
of the algorithm. The most common criterion is that based on the likelihood
function values. If the difference between two ¢ consecutive calculated likelihood
function values is smaller than the defined accuracy e, ¢ > 0, the algorithm
terminates. However, there are also other stopping conditions consisting in
the rate of the estimators change. This rate can be obtained with different
measures and combinations of those measures. Table 1 presents the results
of comparison of: maximum change of single parameter values (relative and
absolute changes), Euclidean and chi2 distance. The table contains the number
of iterations needed to gain the results and charts illustrating the shape of
parameters and comparing the obtained parameters.

The results Table 1 confirm, that the type of stop criterion does not have
substantial influence on parameters estimation. All estimators have very similar
values. The only difference is in the estimation time. The values in brackets
represent the number of iterations taken from a few other calculation attempts.
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Table 1. Comparison of EM distance methods
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According to those data, the best results are given by simple relative changes
of parameters.

One needs to remember that the defined accuracy has great influence on
algorithm efficiency and speed. The same accuracy may be optimal for one
distance type whereas for the others may not be good enough. This may lead
to differences in number of iterations or quality of estimations. Every distance
method needs another accuracy due to different values of distance parameters.
The accuracy depends on a number of model components and points. There is
a need to estimate the accuracy by empirical testing.

4. Methods of EM improvement

Initial convergence of EM is satisfactory because estimation gets to the vicin-
ity of the limit values very fast. But after that, the progress decreases and the
algorithm approaches the solution quite arduously (Fig. 7).
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Fig. 7. Convergence of EM algorithm

To decrease the computational time analytical work should be done, which,
unfortunately, leads to increasing the complexity. There are many variants of
the EM algorithm. One of them is the incremental version of EM algorithm
(IEM). This implementation is based on dividing the observed data into equal
B blocks. The procedure of IEM takes the E-step for only one block of the
observed data at a time and next the B-step is taken. A simple ”scan” of algo-
rithm consist of B partial E-steps and B M-steps. As a result new information
is collected faster. In simulation of McLachlan and Ng performance of IEM
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[12] the algorithm was tested against the simple EM algorithm. A sample set
n = 256 x 256 was generated (Table 2).

Table 2. [12] Performance of IEM and EM algorithm

Algorithm CPU Times Overall (E-stop, M-step) No. of Scans

Standard EM 601 (4.76, 1.07) 101
Incremental EM

B=4 456 (4.89, 1.26) 72
B=8 427 (4.89, 1.26) 67
B=16 414 (4.89, 1.26) 65
B=32 408 (4.90, 1.25) 64
B=64 405 (4.90, 1.28) 63
B=128 407 (4.90, 1.28) 63
B=256 411 (4.94, 1.32) 63
B= 65536 2352 (28.40, 6.87) 63

Only in the case where the number of blocks was established to a size of
the data set the IEM was slow. All other simulations show that EM has slow
convergence and incremental implementation, IEM, is faster.

Another variant of algorithm is Lazy EM [12]. The main idea is to specify
a threshold for selecting subsets of the data upon which E-step and M-step will
be performed. In other words, the method assumes that for each iteration not
all data is of equal significance.

The third method used for accelerating the EM algorithm is sparse EM. In
E-step some posterior probabilities are often close to zero. The sparse method
selects only relative probabilities of a given data point. This algorithm can be
combined with the incremental version by performing partial E-step and sparse
E-step.

5. Conclusions

EM is one of the best algorithms of mixture parameters estimation. It can be
also used in grouping and clustering tasks. It is a stable method, giving good
results in the case of huge amount of data processing. Many improvements
of EM have been found, which makes EM more efficient. They are helpful
in acceleration or dealing with huge data-sets. However, EM is not free of
disadvantages and difficulties. It is very sensitive to the initial values - improper
values may lengthen the time of work or cause a local maximum problem.
Another issue is slow convergence and high complexity, especially in the M step.
There is also a need of multiple repetitions, which has additional influence on
working time.
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