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Abstract

Many network services and protocols can work correctly only when freshness of messages sent

between participants is assured and when the protocol parties’ internal clocks are adjusted.

In this paper we present a novel, secure and fast procedure which can be used to ensure data

freshness and clock synchronization between two communicating parties. Next, we show how

this solution can be used in other cryptographic protocols. As an example of application we

apply our approach to the Internet Key Exchange (IKE) protocol family.

1. Introduction

Data freshness guarantees protection from variants of the replay attack, it

is very important and desired in network communication. We distinguish two

types of freshness: weak and strong. Weak freshness provides only partial

ordering of messages. This type does not supply any other kind of time infor-

mation, e.g., a delay. However, the strong freshness provides total messages
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42 Pawe�l Sza�lachowski, Zbigniew Kotulski

ordering and delay information, so this type of freshness can be obtained in

time synchronization protocols.

The scheme presented in this paper addresses the freshness issue and it has

ability to synchronize time. It is very light (sending only one short message is

required) and based on cryptographic hash functions, which are fast constructs.

Our proposal can be applied in many existing communication protocols, where

small modifications can result in significant advantages. We show them for a

popular IKE protocol. Our method is generic for the IKE protocol family, but

as an example we focus on a concrete element, which is ISAKMP[1]. This is

a sub-protocol of IKE responsible for key agreement. It provides framework

for authentication and key exchange. Our extension enables, except for the

standard secret key agreement by two parties, synchronization of their clocks

in a cryptographically secure way.

This paper is organized as follows. In Section 2 we present the state of the art

and in Section 3 we shortly describe the IKE and ISAKMP underlying a role of

the special structures for their functionality. In Section 4 we introduce our time

refreshment scheme and a proposition of its implementation. The security and

performance analysis of the approach are presented in Section 5, while Section

6 describes the future work and conclusions.

2. State of the art

Precise time is necessary in many areas of our everyday life. Besides scien-

tific and engineering applications like synchronous measurements, all legal and

financial transactions, transport, business and other social activities with dis-

tributed resources demand reliable and accurate time. IEEE provides standard

for precise clock synchronization in [2]. Barak in [3] describes an efficient and

fault-tolerant clock synchronization method. For applications which require

higher trust level (e.g. electronic documents), paper [4] introduces a reliable

clock synchronization method. This is especially important for network com-

munication. The most widespread time synchronization protocol is NTP (The

Network Time Protocol) [5], however, there are many different solutions for

specific network environments [6, 7]. For example, paper [8] presents a scheme

of synchronization of a time-of-day clock in nodes of a local area network.

In paper [9] time synchronization solution for high latency acoustic networks

is introduced. Paper [10] presents a time synchronization approach for large

decentralized systems. Another example, which is WSN, is a very hostile en-

vironment for communication protocols. It operates in an open medium and

nodes of the network are hardware-constraint. In such a case there are many

opportunities to attack network services. The time synchronization service is
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Secure time information in . . . 43

also prone to the attacks in this environment. Vulnerabilities of this service in

the sensor networks are presented in [11]. Therefore, these networks especially

need secure and very efficient solutions, such as [12, 13, 14]. The surveys of

time synchronization schemes in WSNs are presented in [15, 16].

Another crucial issue connected with time is freshness. In practical solu-

tions [17] timestamps, counter values and pseudo-random numbers are used as

freshness identifiers. In the case of strong freshness, every time when a syn-

chronization message is being sent, the sender must disclose his time or another

value which he uses to ensure freshness. It is often undesirable in networks

with open medium (e.g. Wireless Sensor Networks, WSNs) or in dynamic net-

works, like Internet. For example, an attacker knowing time can compromise

a pseudorandom number generator (if the time value has been used as a seed

which is a frequent practice). Another case is, e.g. IP Timestamp in Linux

implementations. An attacker knows when a computer was restarted last time,

so he knows if the restart occurred after some critical system update. Fresh-

ness is so important that many cryptographic protocols require assurance of

this property. A precise definition of freshness and examples of attacks against

it can be found in [18] where also complexity of checking freshness for many

different scenarios is presented. Corin in [19] develops and analyses a model

for security protocols that takes time into account. He considers two aspects

of the problem: an influence of time on messages flow (e.g. timeouts, retrans-

missions) and time information within protocol messages (e.g., a timestamp).

Next method for analyzing security protocols with time aspects is presented

in [20]. This paper analyses real-time properties of security protocols by the

Strand Space-based approach.

3. Protocols and structures

IKE[21, 22] is one of the IPsec protocol suites. It is designed to set up a Secu-

rity Association (SA). SA is a policy and key material used to protect informa-

tion. So one goal of the protocol is secure key agreement, which is a very topical

and important task for network communications. IKE introduces abstraction

for key agreement (ISAKMP) and its implementation (Oakley protocol[23]).

One of the protocol goals is a key established between two parties communi-

cating through an insecure channel. It is based on the Diffie-Hellman[24] key

agreement protocol but it has some additional advantages. Its main features

are presented below:

• it allows the two parties to negotiate the methods of: encryption, key

derivation and authentication,
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44 Pawe�l Sza�lachowski, Zbigniew Kotulski

• it allows the two parties to agree a shared secret without resource

demanding public key encryption,

• it has several options for the key computation,

• the parties can derive a new key from an existing one in a few ways,

with the aid of the Diffie-Hellman protocol or without,

• the protocol offers strong authentication methods for the parties’ iden-

tities,

• before authentication, two parties do not have to compute the expo-

nentiations shared, so it is efficient,

• the authentication checks the results of exponentiations assigned to

the identities of the parties,

• it provides a mechanism which helps avoiding Denial of Service (DoS)

attacks. This will be presented in detail in the next subsection,

• additionally, the parties can define their own or select the existing

mathematical structures for the Diffie-Hellman protocol,

• the protocol allows two parties to use features that are best suited to

their needs and capabilities.

We see that protocol is very flexible and scalable. The main and mandatory

cryptographic attributes of negotiations are: encryption algorithm, hash algo-

rithm, authentication method and information about a group over which to

do the Diffie-Hellman calculations. Each implementation of IKE must provide

the following values for these attributes: DES [25] in the CBC mode (with

weak and semi-weak), MD5 [26] and SHA [27], authentication via pre-shared

keys and default group for the Diffie-Hellman algorithm (prime and generator

defined in [21]).

Now we focus on ISAKMP. It provides framework for authentication and key

exchange but does not define them.

In Fig. 1 the ISAKMP architecture is described. As security protocols we

can use, for example, TLS/SSL [28, 29] or IPSEC-ESP/AH [30]. In the case of

TLS/SSL relationship will be changed (to Socket Layer). The header message

of ISAKMP is shown in Fig. 2.

The first and second fields are Anti-Clogging Tokens (described more detail

in the next Section). Next payload indicates the type of the first payload in

the message. Major and Minor Version fields are to represent the version of

ISAKMP protocol which is used. Exchange Type states the type of exchange

being used. The flags field is for specific options of ISAKMP, it includes Authen-

tication bit, Encryption bit and other exchange-related options. The message

identifier identifies the protocol state (in the second phase of negotiations) and

the last field (Length) describes the length of total message.
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Secure time information in . . . 45

Fig. 1. ISAKMP architecture.

Fig. 2. ISAKMP header.

As many other popular cryptographic protocols, IKE omits strong freshness

or time synchronization service. We will extend it with these security services.

The IKE protocol defines two parties: Initiator and Responder. This is similar

to the Client-Server architecture in messages exchange services. As mentioned

before the protocol offers many scenarios of establishing a new secure communi-

cation channel; its versions depend on participants’ preferences and capabilities.

In spite of that the messages exchanged are different in the protocol’s versions,

IKE includes several permanent elements. One of those obligatory elements is

an Anti-Clogging Token. It will be discussed now as an essential part of our

freshness scheme.
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46 Pawe�l Sza�lachowski, Zbigniew Kotulski

3.1. Anti-Clogging Tokens

Key agreement protocols should be protected against a sort of DoS attacks.

In ISAKMP it is accomplished by Anti-Clogging Tokens (ACTs), also called

cookies. This method is generic for the IKE protocol family. The ACTs are

exchanged between the parties in each version of the protocol as messages’

headers. Since large integer exponentiation is computationally the most expen-

sive step of the protocol, before the parties start their execution they exchange

the ACTs to ensure that they are legitimate and interested in the protocol’s

execution. For both parties the ACTs act as participants’ identifiers and they

rely on source addresses.

The creation of ACTs must satisfy the following requirements:

• ACT must depend on specific parties (the goal is to prevent the at-

tacker from obtaining ACT using real IP address and UDP port),

• no one other than the issuing entity is able to generate ACT that will

be accepted by that entity,

• the process of ACT generation must be fast.

Because of requirements, ACTs are often generated by fast hash function. The

input consists of the IP source and destination address, the UDP source and

destination ports and a locally generated secret random value.

Another duty of the ACTs is keys naming. We denote the ACT of Initiator

by ACT -I and analogously, the ACT of Responder is ACT -R. ISAKMP uses

the concatenation of these values to name the keys. The IKE standard defines

several ways of executions of the protocol. The short one, called aggressive,

needs only three messages exchanges. Among other parameters that are sent

in the protocol’s steps, ACT is included in almost each header.

Finally, the ACTs are connected with time and freshness, but they do not

provide any direct information about time. In our approach the ACTs are

modified in such a way that they retain their unique property, but they are

additionally equipped with fresh time information. As a consequence, the whole

key agreement protocol is enhanced with a new service.

4. Time refreshment protocol

In the protocols which deploy using synchronized time in parties’ internal

clocks, there is always acceptable tolerance of a local time from a reference time.

Therefore in our protocol we take into consideration a tolerance parameter. For

security of time synchronization let us assume that the parties of the protocol

share a common secret.
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Secure time information in . . . 47

In further considerations we will use the following notation:

• prf(key, .) is the keyed pseudo-random function (cryptographic hash

function or MAC scheme),

• K is the secret key shared by Initiator and Responder (it can be used

only for time refresh),

• IPR is the IP address of Responder,

• IPI is the IP address of Initiator,

• PR is the UDP port of Responder,

• PI is the UDP port of Initiator,

• ‖ is the concatenation of two blocks of bits ‡,
• tR is the actual Responder’s, assumed to be the reference time,

• n is the time tolerance parameter,

• fn(.) is a function that converts each of the values x̂ ∈ {x−n, ..., x, ..., x+

n} to one value f̂n = fn(x̂) and which satisfies the following condition:

fn(x) �= fn(x+ k) (1)

for all integer k such that |k| > n,

The protocol starts with sending init message from Initiator to Responder.

After receiving init message, Responder (which keeps the reference time) com-

putes only:

HR = prf(K, IPI‖IPR‖PI‖PR‖n‖fn(tR)), (2)

concatenates it with the time tolerance parameter n and sends the result to

Initiator as a reply. In the next step, Initiator reads his actual time (tI).

Succeeding, if

prf(K, IPI‖IPR‖PI‖PR‖n‖fn(tI)) �= HR, (3)

then Initiator decides that his clock is desynchronized (his time is outside of

the set {x−n, ..., x, ..., x+n}). When the hashes are equal, he decides that his

clock and the Responder’s clock are synchronized with precision defined by the

parameter n. To come to a decision only one hash computation is required for

each party. In the above calculations we assumed that the parties of the protocol

shared the common secret K. To authenticate the messages they merged the

secret K with the other parameters being sent. However, since in many MAC

schemes a secret parameter K is used as the algorithm parameter, it is not

necessary to merge K with the messages before the algorithm execution.

‡To protect against concatenation flaws one should assume fixed sizes of the blocks

concatenated.
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4.1. Details of scheme

An important element of the construction presented is the function fn(.). It

should convert any of x − n, ..., x, ..., x + n to one value in such a way that

property given in (1) is satisfied. The function fn(.) which satisfies condition

(1) can be defined as:

fn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x
p , r = 0
x−r
p , r ≤ n

x+p−r
p , r > n

, (4)

where p = 2n+ 1 and r = x mod p.

The purpose of using fn(.) is to obtain the same value of hash (equal to the

hash of the value in the middle) for all arguments of a given time range. It is

easy to see, that the reference time must lie in the middle of the time range.

The function fn(.) is a piece-wise constant. So, to pass time tR with tolerance

n, we must shift the arguments of the function fn(.), in such a way that the

reference time will lie in the middle of the time range. In order to achieve this

we define the offset parameter ô as:

ô = tR mod p. (5)

To obtain the time freshness information we first compute fn(tR − ô) and then

the hash value of the concatenation of all the parameters required:

HR = prf(K, IPI‖IPR‖PI‖PR‖n‖ô‖fn(tR − ô)). (6)

In this scheme, we additionally used the parameter ô, defined above. It is crucial

for the function fn(.) proper work. This parameter depends on the actual time

(it is obtained dynamically), so to achieve its integrity we concatenate it with

other parameters and hash them together. Of course, the receiver of the hash

does not know the ô value, so we must sent it separately. Moreover, if we have

not agreed the tolerance value, we must sent it also with the hash value.

4.2. Implementation in IKE

In our proposal hash, tolerance and offset parameters are included into the

ACT of the Responder. We presented that structure above. Thus, the ACT of

the Responder looks like this:

ACT −R = HR‖n‖ô. (7)

The processes of ACTs generation and verification can be realized as follows:

In Fig. 3 the first version of time refreshment protocol is presented. The

init message is generic ISAKMP packet. The Responder delivers the ACT
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Secure time information in . . . 49

Version I:

Initiator:

send (initmsg);

Responder:

tR=get time();ô = tR mod (2n+ 1);

HR = prf(K, IPI‖IPR‖PI‖PR‖n‖ô‖fn(tR − ô));

ACT-R=HR‖n‖ô;
send (ACT-R);

Initiator:

parse (ACT-R); tI=get time();

HI = prf(K, IPI‖IPR‖PI‖PR‖n‖ô‖fn(tI − ô));

if HI is equal HR;

adjust time by ô;

else

need to synchronize

Fig. 3. First versions of time refreshment scheme.

with other ISAKMP’s fields. The ACT consists of hash, tolerance and offset

values. The initiator produces another hash value from his local time and then

checks if the hashes are equal. If they are, then his time is in the time range

of Responder, so Initiator can adjust his own clock to the Responder’s time

using the offset value. Otherwise, Initiator needs to synchronize his time by an

external service. Note that Initiator knows his IP address and port, but the

tolerance and offset parameters are delivered in the ACT.

The second version (Fig. 4) is for the case when Initiator sends his time in-

formation. He uses the pseudo-random keyed function to encode his time. Next

that information is sent within unused field (ACT -R in initmsg). Responder

checks if the time is synchronized. If it is Responder adds 1 at the beginning

of his ACT, otherwise Responder adds 0. After that message Initiator knows if

his time is synchronized. Unfortunately, if time is synchronized, Initiator can

not adjust it. This is because Responder does not pass the offset.

In our approach we treat transfer delays as negligible values. If these delays

are significant then Initiator can take them into consideration (Version I). Thus,

the time of Initiator obtained by the system function get time(.), before using

a cryptographic hash function, should be adjusted according to the delays. Our
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Version II:

Initiator:

tI=get time();ô = tI mod (2n+ 1)

HI = prf(K, IPI‖IPR‖PI‖PR‖n‖ô‖fn(tI − ô));

use HI‖n‖ô as ACT-R in initmsg;

send (initmsg);

Responder:

parse (initmsg); tR=get time();

H ′
R = prf(K, IPI‖IPR‖PI‖PR‖n‖ô‖fn(tR − ô))

ACT-R=generate ACT();

if H ′
R is equal HR (from initmsg)

ACT-R = 1‖ACT-R

else

ACT-R = 0‖ACT-R

send (ACT-R)

Initiator:

check first bit of ACT-R

Fig. 4. Second version of time refreshment scheme.

scheme also allows Initiator to make an attempt of ”off-line” time synchroniza-

tion. Initiator may be interested in looking for the reference time by checking

probable time values from different ranges (see e.g. [31]). We rely on the IKE

protocol in ensuring integrity of the protocol’s messages. So, when IKE fails,

the Initiator must not apply any changes in configuration of his system. We

describe this aspect in Section 5.

4.3. Variants of protocol’s execution

Presentation of a complete IKE’s execution needs description of several addi-

tional elements of the protocol. Concatenation ‖ and the function prf(.) have

already been introduced. The rest of notation follows the IKE’s specification

[21]:

• HDR is an ISAKMP header (we described it in Fig. 2),

• HDR∗ indicates the payload encryption,

• SA is a negotiation payload with one or more proposals,

• KE is the key exchange payload,

• IDI and IDR denote the identities of Initiator and Responder,
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Secure time information in . . . 51

• NI and NR are the nonces supplied by Initiator and Responder,

• HASHI and HASHR are the authentication tags for Initiator and

Responder

In this section we focused on Phase 1 of IKE. The goal is to establish a secure

authenticated communication channel. An example of so-called Authenticated

With the Pre-Shared Key (Main Mode) version of IKE with private identities

and without the Diffie-Hellman protocol is now considered. This scenario is

noteworthy if we need simplicity and high performance of the protocol. Ex-

change of messages in this version of the protocol is presented in Fig. 5.

I message R

−→ HDR, SA −→
←− HDR, SA ←−
−→ HDR, KE, NI −→
←− HDR, KE, NR ←−
−→ HDR∗, IDI ,

HASHI

−→

←− HDR∗, IDR,

HASHR

←−

Fig. 5. Pre-shared key authentication in the Main Mode.

Consider the version of time scheme presented below in Fig. 5. The HDR

in the first message contains only ACT -I, ACT -R is null. Next, Responder

produces ACT -R in the way presented in Fig. 3 and sends it within the second

message. When Initiator receives it, he is able to check if his time is synchro-

nized (exact to n). If it is, then the time value can be adjusted by ô to the

reference time. Otherwise, in the case of desynchronized clock, Initiator can

detect this and adjust time using external protocols, see e.g. [5, 6, 7, 8].

IKE introduces also an aggressive mode with a pre-shared key. It is very

fast, requires sending only three messages and a few hashes calculations. The

aggressive mode with secure time information is presented in Fig. 6. Using that

mode we now describe the second version of time refresh scheme. The HDR

as ISAKMP header includes ACT of Initiator and Responder. In the first

message only ACT -I is used. So in ACT -R we pass time information. Initiator

computes hash and parameters as in Fig. 4. Responder checks ACT -R of the

first message. Then he computes hash for his own time. Next, Responder uses

one bit in his own ACT to signal if the Initiator’s time is synchronized.
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I message R

−→ HDR, SA, KE, NI , IDI −→
←− HDR, SA, KE, NR, IDR,

HASHR

←−

−→ HDR, HASHI −→

Fig. 6. Pre-shared key authentication in the Aggressive Mode.

5. Security and performance

An ACT is a quite short message. Often we want to include a hash and

two parameters within 64 bits. The tolerance (n) parameter can be agreed

in advance, but then our scheme becomes less flexible. We save space in the

ACT for a longer hash, but we can not match the time range. Fixed n may

be useful in embedded systems, but we decide to consider a flexible example of

the scheme.

The presented approach is closely connected with a cryptographic hash func-

tion. The hash function is a core of our solution, so this element should be

chosen very carefully. It should be widely approved and secure. The best

known attack against hashes is the birthday attack, which is connected with

collisions. For the hash function prf(.) we define the collision as finding two

different messages, which produce the same tag.

The probability of collision’s occurrence is estimated by 2−
m
2 , where m is the

tag length. Knowing length of fields we can easily estimate how often collision

will occur. Of course, the occurrence of collisions is very undesirable. In our

case a collision is not very interesting for an attacker, rather it can mislead

Initiator. Having unsynchronized time, he could obtain the same hash, so he

could deduce that his clock is synchronized.

For the attacker with ability to eavesdrop and to tamper messages, a forgery

in the time refreshment protocol is equivalent to breaking the hash function

used or founding the key K. The probability of successful attack should be

close to max( 1
2l
, 1
2l′

), where l and l′ are the security parameters (l is the length

of K and l′ is the length of the hash function output). According to [32] the key

K should be at least 80-bits long. The tolerance n and the offset ô parameters

are sent as plaintexts, so we must ensure their integrity. That is realized by

concatenating these values with K, IPI and the value of fn(tR − ô) and by

calculating their hash, see (6). The verification passes when all these values

are correct. However, a malicious attacker can modify all messages. So, when

he decides to modify any parameter of the Responder’s ACT, then Initiator

states that his clock is desynchronized (even if it is not true). On this level
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Secure time information in . . . 53

Initiator cannot detect a malicious modification. But our scheme is embedded

into the IKE protocol, which provides integrity/authentication of messages, so

any malicious modification would be detected in the following steps of the IKE

protocol.

The scheme presented protects the reference time even when an attacker com-

promises the key K. It is because of the inherent properties of a cryptographic

hash function, which produces the ACT. In this case the attacker must perform

the brute force attack in order to determine the values of parameters hashed.

Denote k as the bits resolution of time value. Assume that time in the group of

users is random (not connected with real actual time). The probability that the

attacker (with a compromised key) guesses the actual time is q(2n+1)s
2k

, where q

is the number of attacker’s hash computations and s is the number of known

messages.

Thus the most important factor is the time resolution. The popular size of

actual time storing is 32 bits, but 16 bits and 64 bits variables are used too.

The time of a successful attack also depends on the value of n. This is because

the larger size of parameter n decreases the size of outputs of the function fn(.)

(what follows, the number of its possible values), so an attacker has to compute

fewer hashes on average to break the protocol.

The memory, transmission and computational overheads of the presented

scheme are negligible. Our solution uses a cryptographic hash function; gen-

erally, most of the implementations of ISAKMP use fast cryptographic hash

functions (for ACT generation) too. We change only the arguments of this

function, which fits (in most cases) to one block of a hash. Furthermore, mod-

ifications are introduced only in the first phase of the IKE protocol. For this

reason, the computational overhead due to time freshness service is negligible.

6. Future work and conclusions

Our scheme ideally fits as a lightweight time refreshment protocol. It can

be easily integrated into other existing security protocols. Its main security

requirements are that the parties share the secret key K and that the protocol

provides data integrity. The last requirement can be achieved by using an ad-

ditional authentication code for a message. In many protocols there exist fields

for timestamps, which can be used in such a case. A good example is Optimized

Link State Routing Protocol (OLSR) and its secured version [33], where the

method described could be placed into the timestamp message. Other examples

of methods, which can be enhanced with time refreshment are authentication

protocols like [34, 35, 36], where also the timestamps fields occur.
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There are many other applications where assurance of an actual time is re-

quired. A good example could be Kerberos Protocol [37, 38, 39], where the

time of a server and the time of clients must be synchronized. Our scheme

can be applied there: when a client detects that his time is desynchronized, he

should synchronize it with a trusted host (server). The server does not disclose

its time, thus a potential attacker, even when the secret key is compromised,

knows only that the client’s time is wrong. The presented proposal of freshness

may be used also in other applications, e.g. position-based nodes selecting in

WSNs, see [40].

In this paper we proposed a protocol which realizes time synchronization

and data freshness between two parties. The described approach ideally fits

cryptographic or secure communication protocols. Hence we decided to use

the IKE protocol as an example of its application. The IKE protocol can be

enhanced in an easy way, because of ACTs contained in its messages. Moreover,

such an extension gives no significant computational or memory overhead to the

original protocol. The detailed implementation of one of our scheme’s versions

is presented based on the Oakley protocol in [41]. Another crucial issue is

security. It strongly depends on a cryptographic hash function chosen, traffic in

the network and the tolerance parameter selected. As shown above, appropriate

selection of these factors can give us the expected security level. All parameters

can be set according to a given key agreement scenario. We can increase the level

of security by agreement of the tolerance parameter in advance (then the hash

value in a ACT will be longer). The scheme should be composed into a protocol

which provides integrity of messages (as the IKE protocol does), otherwise it

needs additional authenticate code to protect the hash value and the protocol

parameters. As presented in this paper, our solution is fast, scalable, secure

and can be integrated with existing protocols in an easy way.
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