Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 04/02/2026 01:11:44

Annales UMCS
K R 012) Informatica
nnales UMCS Informatica AI XII, 4 (2012) 11-22 . .
DOI: 10.2478 /v10065-012-0018-y Lub]m-.Poloma
Sectio Al

http://www.annales.umcs.lublin.pl/

Hardened Bloom Filters, with an Application to
Unobservability

Nicolas Bernard!'*, Franck Leprévost!?

YLACS, University of Luzembourg
162 A, Avenue de la Faiencerie, L-1511 Luzembourg

Abstract — Classical Bloom filters may be used to elegantly check if an element e belongs to a set
S, and, if not, to add e to S. They do not store any data and only provide boolean answers regarding
the membership of a given element in the set, with some probability of false positive answers. Bloom
filters are often used in caching system to check that some requested data actually exist before doing
a costly lookup to retrieve them. However, security issues may arise for some other applications where
an active attacker is able to inject data crafted to degrade the filters’ algorithmic properties, resulting
for instance in a Denial of Service (DoS) situation. This leads us to the concept of hardened Bloom
filters, combining classical Bloom filters with cryptographic hash functions and secret nonces. We
show how this approach is successfully used in the TrueNyms unobservability system and protects it

against replay attacks.

1 Introduction

Many applications in computer science depend on the result of the following problem:
check if an element e belongs to a set S, and, if it does not, add e to S. Depending on
the application we have in mind, the "match" or "no match" answer will usually lead
to additional processing, like for instance in the following two examples:

(1) Filtering duplicated packets on a network connection: On a network connec-
tion, it can happen that a packet is duplicated. The destination host then
receives it twice, so does the application. This is for instance the case on a
UDP connection.

*Nicolas.Bernard@Quni.lu
fFranck.Leprevost@Quni.lu

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 04/02/2026 01:11:44

12

Hardened Bloom Filters, with an Application to...

(2) Counting the number of different elements in a collection: If they are not in
this set, a counter is increased and the element is added to the set.

Bloom filters [1] address these problems in an elegant manner. A Bloom filter is
a probabilistic data structure that allows to represent a finite set S without storing
the actual elements of the set S. Among their main properties, Bloom filters have
small footprints, a fast lookup time, allow to add elements quickly to the represented
set S, and the addition of an element cannot fail due to the data structure being
“full”. Bloom filters do not store any data and can only provide boolean answers on
the membership of a given element in the set, with some probability of false positive
answers. They are often used in caching system to check that some requested data
actually exist before doing a costly lookup to retrieve them.

In the situation of the example (1) above, a Bloom filter at the receiving end could
be used to drop the duplicated packets: packets that do not match are processed
(i.e., used by the application) and added to the set, while packets that do match are
considered as duplicated and discarded.

In the situation of example (2), each element of the collection is matched against
a Bloom filter representing an “already accounted” set. While the result is only
of probabilistic nature, its complexity is O(m) whereas the complexity of a classi-
cal algorithm remains O(mlogm), where m is the number of elements of the collection.

This being said, security issues may be raised for many applications, leading e.g. to
Denial of Service (DoS) attacks. The purpose of this article is to provide a solution
to these issues by introducing hardened Bloom filters. Moreover, we show their use in
the seminal example of the TrueNyms protocol [2], which raised our interest in Bloom
filters and motivated the present contribution.

This article is organized as follows: in section 2, we briefly explain the underlying
concept of a classical Bloom filter. In section 3, we describe the security issues that an
external malicious party may exploit, leading to the construction of hardened Bloom
filters. In section 4, we briefly describe the TrueNyms unobservability system, and
describe how to efficiently use hardened Bloom filters to prevent replay attacks on this
system. We conclude this article with some further ideas for the enhancements of our
approach, which we plan to develop in due time.

2 Classical Bloom filters

A Bloom filter (in the classical understanding as defined in [1]) is a probabilistic
data structure representing a finite set S. It consists of a bit array A of size 2" (in
practice n is small, say n < 25), and k distinct hash functions (H;)i<;< such that

Hj(data) =1i; € [0,2" —1]. (1)

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 04/02/2026 01:11:44

Nicolas Bernard, Franck Leprévost

In other words, ¢; is an index of A, depending on the data considered. Moreover,
k is also small: its chosen value — in a first approach — depends on the allowed
probabilistic "false-positive" occurrences according to formula 2 below. The discussion
about the (lack of) requirements on hash functions in the context of classical Bloom
filters is addressed in part 2.2.

2.1 Construction of S and A

Initially, S = @ and all the bit values of A are equal to 0. An element e is added to S by
setting to 1 all the positions of the array A indexed by the hash values iy = H;(e),i2 =
HZ(e)a cey by = Hk(e)

Vj € [17k]7 A[Hj(e)] < L
The test to determine if an element e is already in S is performed by generating the
indices for this element. An element e is then probably in S if, and only if:

Vi€ [1,k], A[H,(e)] = 1.

The probability in the previous sentence applies only to the "if" part. Indeed, there
can be values i, j, e, e’ s.t.

H;(e) = H;(€').
In other words, an index in the array A could be “part of” multiple elements of S. As
a consequence, there is no way to remove elements from S and, once set to 1, a value
Ali] is never reset to 0. It implies in particular that, once added, an element belonging
to S is always found if matched against the filter.

Now, with some probability, the filter can represent an element e as belonging to S
although it is not the case: it may indeed happen that all the indices corresponding to
e are equal to 1, while e € S. Such a “false-positive” occurs with a probability:

(1—(1—2{1>km>kz(1—ezw)k7 (2)

where m is the number of elements in S.

2.2 Non-cryptographic hash functions

A hash function as used in the context of classical Bloom filters a priori differs
strongly from a hash function used in the context of cryptology. It is a function:

H:N—[0,2" —1]
with good statistical distribution properties for given “normal data”, as described for

instance in section 6.4 of [3]. In particular, these hash functions usually lack the

We consider here any finite word on any finite alphabet as mappable to an element of N, and
that distinct words lead to distinct elements of N.

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 04/02/2026 01:11:44

14

Hardened Bloom Filters, with an Application to...

compression property (see [4, section 9.2.1]) that is a mandatory and important part
of a cryptographic hash function.

Such a hash function can be very simple, and usually it is in order to be fast. For
instance, it may consist in the modular division by some prime, chosen according to
the needed size of the image. In fact, since the hash function does not need to consider
all the data given but only a suitable part to obtain a correct distribution, we can even
construct hash functions with complexity in O(1).

Consequences are multiple, but here we will only note the three following :

(1) Recall that we need k distinct hash functions for the classical Bloom filters.
We can create many different functions with similar properties by changing a
parameter in one fixed scheme. For instance, in a scheme based on modular
division, the choice of k distinct appropriate primes leads to &k distinct hash
functions.

(2) It is possible to find preimages : it means that given an i, it is possible to find
Dy, Dy, --- such that H(D,) = H(D,) = --- =i. Indeed, many simple hash
functions can be easily inverted. Anyway, given the usual size of the image
set, it would be easy to find such values by brute-force.

(3) It is usually even possible, given a few such hash functions Hy,--- ,H; and
corresponding indices 41, - - ,ij, to find a common preimage D such that
H\(D) =iy, ,H;(D) = ;. (3)

3 Security issues and Hardened Bloom filters

As mentioned in the introduction (section 1), security issues may be raised in some
applications. For instance, assume the elements to be matched can be tampered by
an external malicious party, say Mallory. Recall then that the probability given in
equation 2 applies to “ordinary” elements. Since the hash functions Hy are a priori
non-cryptographic ones, Mallory can craft special elements that will fill A with bits set
to 1 much faster than random data would?. Of course, once all the bits of the array A
are equal to 1, each element tried against the filter will match, which results in a denial
of service (DoS) attack in the cases given beforehand: all the elements are considered
as already in the set, even when they are not. So, Bloom filters must be hardened to
prevent such attacks if Mallory controls the incoming data.

If an attacker can inject as many elements he wants to, the battle is lost because
even if he is restricted to the probability given by equation 2, with m growing, the
probability will converge to 1. However, such a case is rare, and most of the time the
attacker will find himself unable to add more than a fixed number of elements per time
unit. Here, it is possible to fight back, and design appropriate countermeasures.

2The irony being that, while collisions are usually a sign of weakness in cryptographic hash
functions, here Mallory has to find non-colliding elements in order to set to 1 all the bits of the array
A as fast as possible.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 04/02/2026 01:11:44

Nicolas Bernard, Franck Leprévost

3.1 Protection against index selection attacks

To prevent Mallory from just deciding upon a set of indices and creating suitable
data to send, the first idea is to use Bloom filters where the k£ hash functions have some
cryptographic properties.

Notably, it must be hard — no faster way than brute force — to find preimages,
to insure that the attacker will not be able in practice to find a common preimage as
defined in equation 3. With such hash functions, it would be far harder for Mallory to
find non-colliding packets than simply deciding which bits in the array A he wants to
set and generating the corresponding data.

The natural choice for a hash function with such cryptographic properties, is to take
a cryptographic hash function H¢ [4, page 323]. Note however that the properties of
a cryptographic hash function are a superset of what is actually needed: we comment
on these aspects in section 5.

3.2 k cryptographic hash functions 7

The first difficulty is to find k such functions. As we have seen in section 2.2, it is
easy to have many non-cryptographic hash functions. Unfortunately, even for a small
relevant k, we cannot find k different standard cryptographic hash functions. The list
of such hash functions mainly consist of MD5, SHA-1, the SHA-2 and RIPEMD families
[4, 5], and this list can hardly be extended much further.

Nonetheless, there are multiple ways to solve this issue :

(1) Conceptually, the easiest way is probably to add the index of the function
before the data. In other words, given one cryptographic hash function H,
and using the | symbol for concatenation, we define the k hash functions as

H;(data) := HC (ildata), 1<i<k.

Some variants of this method can be imagined. For instance, the index could
be used in the initialization vector of the compression function of the hash
function. However this proposal only makes the implementation harder as
specifying this vector is usually not possible through the API of the crypto-
graphic libraries providing such functions.

(2) One can also think of using the iterated application of the cryptographic hash
function H€ to produce the (Hi)lgig x- More precisely, the k hash functions
are defined as

H;(data) := (H®)' (data), 1<i<k,
with
HeYi (4 H¢(data) ifi=1,
(H)' (data) = { .. ((Hc)ifl(dam)) if2<i<k.

(3) Another way, is to notice that the fingerprint returned by a cryptographic
hash function is a lot longer than an index for the bit array of the Bloom

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 04/02/2026 01:11:44

16

Hardened Bloom Filters, with an Application to...

filter. Indeed, the shortest fingerprints are at least 128 bits long, while it is
unusual for an index to be more than 25 bits long, as noted in section 2. The
idea then would be to see the fingerprint provided by a cryptographic hash
function as the concatenation of [indices :

H(data) = ixlig|is|- - [ir|r,

where 7 is an unused “remainder” if the size of the fingerprint is not a multiple
of the size of an index, and i; are the indices of equation 1. Of course, it may
happen that [< k, then this scheme would need to be combined with one of
the previous two to generate the k required indices. However, as there are
standard hash functions with fingerprints size up to 512 bits at least, it should
be possible to use it alone in most cases.

(4) Another possibility that we will not detail here would be to construct custom
hash functions using block ciphers [4, section 9.4.1].

Security-wise, there is no evidence that one of the previous schemes has some obvious
advantage over the others. Let us then compare them on their speed. The algorithmic
complexity of a cryptographic hash function is at least in O(s), where s is the size
of the data to be hashed. To simplify, assume that the algorithm complexity of the
cryptographic hash function is indeed s, the complexity of the different schemes would
then be in :

(1) ks for the first one, as the H¢ function is called & times on data of size s+ ¢
(e being the size of the index added before the actual data).

(2) s+ (k —1)f for the second one, where f is the size of a fingerprint: H¢ is
called once on data of size s, then k — 1 times on the fingerprint of size f
generated at the previous step. The second scheme is hence faster than the
first one if the data size is large.

(3) The third one needs only one call to the cryptographic hash function if [> k.
If I < k the exact complexity depends on the combination with one of the
other schemes, but will be reduced compared to it anyway.

The third scheme then seems to be the best choice, since it is the fastest one. It must
be noted however that a cryptographic hash function is anyway much slower than a
non-cryptographic one. To take an example, the number of operations to hash data
of size s can be as low as 1 for a non-cryptographic hash function as described in 2.2,
while it would be of the order of 160s for a typical cryptographic hash function like
RIPEMD-160 [6].

3.3 Protection against offline attacks

Let us recall that the hash functions considered here give a value that is an index
for the array A, i.e. a value belonging to [0,2"], with n < 25, and hence preimages
can be found by brute force. Moreover, because Bloom filters are deterministic (and
the different schemes presented in 3.2 do not change this), the same input will fill two
filters in the same way. Mallory can then perform the following offline DoS attack:

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 04/02/2026 01:11:44

Nicolas Bernard, Franck Leprévost

Brute force the hash functions to create a set of elements that would fill the Bloom
filter faster than “normal” data would. Even if he is not anymore able to select indices
and craft data to set them specifically, he can still generate a lot of data packets and
send the group of them that sets the greatest number of bits in the array A. While
such elements would have some collisions on indices, they would still fill the filter a lot
faster than the statistical probability predicts.

Let us summarize the situation: to insure the protection against index selection
attacks (seen in part 3.1), we rely on Bloom filters using cryptographic hash functions.
Now, to furthermore insure the protection against an offline attack as described above,
we add the utilization of secret nonces. A nonce is a random value, which in our context
is generated at the instantiation of a Bloom filter and is then used as a key so that the
cryptographic hash functions are in fact replaced by MACs (or keyed hash functions,
see [4, page 325]). Instead of giving all details, we provide here the conceptual idea,
which amounts to specializing H¢ for each Bloom filter § in something like

H%S(data) := H(ng|data), (4)
where ng is the nonce used for filter §.

With such a scheme, Mallory is blinded: he is not able to know the effect of an
element and hence cannot craft special elements anymore. As a consequence, an
active DoS attack by Mallory against Bloom filters hardened this way does not work,
provided that Mallory is only able to add a limited number of elements per second.

The main drawback is that it is not possible anymore to take the union of two sets
by using a bit-wise OR operation on the arrays of the corresponding bloom filters
unless they are using the same nonce. For most applications, this however should not
be a significant issue.

We define here a hardened Bloom filters as a classical Bloom filter using
cryptographically-enhanced hash functions together with a secret nonce, address-
ing index-selection attacks as well as offline attacks.

4 Hardened Bloom filters and TrueNyms

We now describe how such hardened Bloom filters are used in the TrueNyms unob-
servability system [7, 8, 2] as a protection against some forms of active traffic analysis.
Let us first recall what TrueNyms? is.

3We partially rely on [8] for the wording of some paragraphs of subsections 4.1 and 4.2, as well
as for the figures 1 and 2.

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 04/02/2026 01:11:44

18

Hardened Bloom Filters, with an Application to...

4.1 The TrueNyms unobservability system

The TrueNyms system allows Alice and Bob to communicate over an IP network
without any observer knowing it. More precisely, when parties are using TrueNyms for
their communications, an observer, as powerful as he may be, is unable to know who
they are communicating with. He is unable to know when a communication occurs.
He is even unable to know if a communication occurs at all.

This TrueNyms system is a peer-to-peer overlay network based on Onion-Routing [9,
10], to which it adds protection against all forms of traffic analysis, including replay
attacks. Its performance is experimentally validated and is appropriate for most uses
(e.g. Web browsing and other HTTP-based protocols like RSS, Instant Messaging, file
transfers, audio and video streaming, remote shell, . ..) but the usability of applications
requiring a very low end-to-end latency (like for instance telephony over IP) may be
degraded.

Briefly, Onion-Routing transmits data through nested encrypted tunnels established
through multiple relays R;, Ro, etc. (see Figure 1 — in the following, a node denotes
either a relay or Alice or Bob). These relays accept to take part in an anonymity
system, but are not supposed trusted. Indeed, some of them can cooperate with a
passive observer Eve or with an active observer Mallory. Relays see only enciphered
traffic and know only the previous and next nodes on the route. They do not know if
those nodes are other relays or end-points.

B
Alice Br)
Ry Ry
R { {r} Koy } [
{{P}*m };,-” } R
iheic B T
{ { { {P} kg } 2 }A_M‘ }kn, R, .__,-’
|'f. {P}hr‘
Rs
RI’ # \"' —H;{ Bob
P

Fig. 1. In Onion-Routing, to communicate with Bob, Alice creates a set of
nested encrypted tunnels. For every packet, each relay removes the outer-
most encryption layer (hence the name of this scheme).

To clarify some terminology used throughout this section, an encrypted tunnel between
Alice and one of the nodes is called a connection. Then, a set of nested connections
between Alice and Bob is called a route. Despite being created by Alice, those routes are

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 04/02/2026 01:11:44

Nicolas Bernard, Franck Leprévost

not related to IP source routing or other IP-level routing. Standard IP routing is still
used between successive nodes if these nodes are on an IP network as we consider here.
At last, in TrueNyms, a communication is a superset of one or more routes between
Alice and Bob that are used to transmit data between them. A communication can
use multiple routes simultaneously and / or sequentially.

4.2 Replay attacks

An issue with standard cryptography modes when used in Onion-Routing is that they
allow an active replay attack®. Let us examine the situation at a relay at a given time:
for instance, let us assume that this specific relay is a part of three routes, as depicted

in Figure 2.
ABCDEF 7TEXIF | ABCDEF TTEXIF
XNSXAX WXOVGR : XNSXAX : WXOVGR
3NTUBM OATGBX | ! XNSXAX ! OATGBX
LAMPFB FWULFO LAMPFB FWULFO
TTPAXO TTPAXO

ORSUAT
AFPFL
ECZAFV

ORWCMX

CFBAQL
AUTFYF

CFBAQL
AUTFYF

NAELF2 NAELF2
CLOCRW ETEOPG CLOCRW ETEOPG.
VOYUAV QXBGFA VOYUAV | OXBGFA
4NBXVE DM3XRE 4NBXVE 'OXBGFA |
XLDTFH TUZLFB XLDTFH TUZLFB

Fig. 2. Cryptography hides connection bindings to a passive observer (left),
but not to an active observer able to inject duplicate packets (right).

On the left of Figure 2, the observer sees three distinct incoming connections (A, B, C),
while there is also three outgoing connections (1, 2, 3). To make the relaying useless,
the observer must discover the relationship between the incoming and the outgoing
connections, or at least he must discover the outgoing connection corresponding to an
incoming one he is interested in.

As an encryption layer is removed on each connection, he cannot discover this by a
casual glance at the content of the packets. Moreover, in TrueNyms, the packet size
and rate are normalized, and care is taken to prevent information leaks when a route
is established or closed (as described in |7, 8, 2]).

Those standard traffic analysis methods are hence closed to an attacker.

However, as cryptography is deterministic, if nothing is done, a given packet entered
twice through a same incoming connection would be output twice — in its form with
an encryption layer removed — on the corresponding outgoing connection. So Mallory
takes a packet and duplicates it, say on connection A, which leads to the right side
of Figure 2. He then looks for two identical packets on the output, and finds them

4This is different of the replay attacks well known in cryptography, where an attacker can play
part of a protocol back from a recording, and that are usually prevented by the use of nonces or
timestamps.

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 04/02/2026 01:11:44

20

Hardened Bloom Filters, with an Application to...

on the connection 3, so he learns that connection A and connection 3 are part of
the same route. Obviously, depending on the interest of Mallory, he can perform a
similar attack on the next relay having the connection 3 as an incoming connection,
and then see where it leads ultimately. Or he can perform the same attack on the other
incoming connections B and C, and figure out exactly which outgoing connection 1 or
2 corresponds to them.

The obvious way to prevent an external attacker to inject packets would be to use
node-to-node authentication on a route, but in this case it would not be sufficient
since, even if we assume that the replay of an authenticated packet is not possible, the
possibility for Mallory to operate a node must also be accounted for. This means there
is no way to actually prevent packet injection by an active observer, and so the system
has to be designed in a way that makes such injection useless.

4.3 Using hardened Bloom filters to prevent replay attacks

Recall that packets between two successive nodes on a route can be replayed by
Mallory, and hence will be output on the corresponding outgoing connection to the
downstream relay.

In the TrueNyms implementation, to prevent such replay attacks, a relay “remem-
bers” all the packets of a transmission and compares each incoming packet on the same
connection to them. If it does not match, the packet is forwarded; if it does match, it
is dropped (and a dummy packet is forwarded).

Of course this approach requires a very fast way to compare a new packet to the
previous ones, hence the need for Bloom filters.

The situation is then similar to the context described in the example (1) of section 1:
an accepted packet is added to the filter if it “was not” already in it. In TrueNyms,
as the traffic is shaped, Mallory cannot simply flood the filter as the addition to the
filter is only done for transmitted packets, and packets outside the shaping envelope
are simply dropped.

In order to protect our unobservability system against the security issues raised in
section 3, TrueNyms relies on hardened Bloom filters.

Notice that, as false positives can occur, legitimate packets may be dropped. This
may slightly alter the performance of the system, but is not otherwise an issue as
TrueNyms provides end-to-end reliability if needed: the packet will then be resent with
another aspect. To ensure this different aspect, unacknowledged packets are buffered
unencrypted. If it is necessary to retransmit a packet, a nonce (unrelated to the nonces
used in the hardened Bloom filters in part 3.3) it includes is changed before the packet
is re-encrypted. As the cipher is used in bi-IGE mode (see below), the new encrypted
packet will have no similarities with the old one.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 04/02/2026 01:11:44

Nicolas Bernard, Franck Leprévost

Nonetheless, a long term connection would start to swamp the hardened Bloom Filter
after some time, and packets would start to be lost more and more. In TrueNyms, this
is not an issue due to two distinct features :

(1) Even if the communication is long-term, this is not the case of the routes it
uses. The lifetime of a route is chosen at random and is fixed before it is
used ;

(2) Routes are re-keyed from time to time. It means the encryption keys used
for the connections are changed. As the same packet entering twice but going
through the encryption layer with different keys would give different (and a
priori unmatchable without knowing the keys) outputs, the hardened Bloom
filters can be replaced by new ones during the key changes.

Of course, it only prevents Mallory from replaying identical packets. If let unhin-
dered, he will replay slightly different packets and his attack would be successful because
after adding or removing an encryption layer with a standard block cipher mode, the
original and replayed packets will have similarities. For the use of hardened Bloom
filters to be effective, this attack must be prevented too, for instance by employing a
special mode like bi-IGE (which is a bi-directional application of the Infinite Garble
Extension mode — Campbell, 1977, [11]) as it is done in TrueNyms.

5 Conclusions and further work

In this paper, after recalling the functioning and the main properties of classical
Bloom filters, we considered the situation where a malicious party may develop index-
selection attacks or offline attacks against some applications, leading e.g. to Denial
of Service situations. We then designed hardened Bloom filters able to withstand
such attacks, combining classical Bloom filters together with cryptographic hash
functions and secret nonces. Although these hardened Bloom filters are slower than
classical Bloom filters, mostly due to the use of cryptographic hash functions over
non-cryptographic ones, we described how they are concretely successfully used in
the TrueNyms unobservability system to defend it against active traffic analysis attacks.

Should the need arise, performance can probably be improved by further work on
the hash functions. Our proposed hardened Bloom filters relies notably on crypto-
graphic hash functions. However, the requirements are probably weaker: for instance,
while compression and preimage resistance appear to be needed, it is not obvious
that second-preimage and collision-resistance are necessary as well. It may hence be
possible to construct custom hash functions with only the mandatory properties, that
would be faster than the usual cryptographic hash functions. We intend to study these
possibilities in a future work.

Finally, multiple variants of Bloom filters have been proposed (Bloomier filters, etc.)
over the years, some faster, some using less space, some allowing to remove elements,

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 04/02/2026 01:11:44

22

Hardened Bloom Filters, with an Application to...

etc.

In a future work, we also intend to study the possibility to similarly harden some

of these numerous existing variants of Bloom filters.

Acknowledgements

The FNR/04/01/05/TeSeGrAd grant partially supported this research.

[1

2]

(3]
(4]

[5

[6

(7]

8

[9

[10]

(11]

References

Bloom B. H., Space/time trade-offs in hash coding with allowable errors, Communications of the
ACM 13 (7) (1970): 422.

Bernard N., Leprévost F., Unobservability of low-latency communications: the TrueNyms proto-
col, work in progress.

Knuth D. E., Sorting and Searching,The Art of Computer Programming 3 (1998).

Menezes A. J., van Oorschot P. C., Vanstone S. A., Handbook of Applied Cryptography, Discrete
Mathematics and its Applications, CRC Press (1997).

Anderson R., Security Engineering: A Guide to Building Dependable Distributed Systems, Wiley
(2001).

Preneel B., Dobbertin H., Bosselaers A., The Cryptographic Hash Function RIPEMD-160, Cryp-
toBytes 3 (2) (1997): 9.

Bernard N., Non-observabilité des communications & faible latence, Université du Luxembourg,
Université de Grenoble 1 — Joseph Fourier (2008).

Bernard N., Leprévost F., Beyond TOR: The TrueNyms Protocol, Security and Intelligent Infor-
mation Systems 7053 (2012): 68.

Goldschlag D. M., Reed M. G., Syverson P. F., Hiding Routing Information, Proceedings of
Information Hiding: First International Workshop, Springer-Verlag, LNCS 1174 (1996): 137.
Reed M. G., Syverson P. F., Goldschlag D. M., Anonymous connections and Onion Routing,
IEEE Journal on Selected Areas in Communications 16(4) (1998): 482.

Knudsen L., Block Chaining Modes of Operation, Department of Informatics, University of Bergen
(2000); http://www.ii.uib.no/publikasjoner/texrap/ps/2000-207.ps

http://www.tcpdf.org

