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Abstract — Expander graphs are highly connected sparse finite graphs. The property of being an expander

seems significant in many of these mathematical, computational and physical contexts. For practical applica-

tions it is very important to construct expander and Ramanujan graphs with given regularity and order. In

general, constructions of the best expander graphs with a given regularity and order is no easy task. In this

paper we present algorithms for generation of Ramanujan graphs and other expanders. We describe properties

of obtained graphs in comparison to previously known results. We present a method to obtain a new examples

of irregular LDPC codes based on described graphs and we briefly describe properties of this codes.
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1 Introduction

The property of being an expander seems to be very sig-
nificant. In fact the known families of Ramanujan graphs
of unbounded degree play an important role in theory of
finite geometries and have many practical applications for
example in Internet network, cryptography, car naviga-
tion systems, sociology, mobile robotics and construction
of class of error correcting codes so called LDPC codes.
What’s more expander graphs are used to efficient error
reduction in probabilistic algorithms. Algorithms that use
the random input (is not easy to collect a reasonable col-
lection of random bits) to reduce the expected running
time or memory usage have a chance of producing an in-
correct result. Using expander walks allows to achieve
the same error probability, with much fewer random bits.
The exact form of the exponential decay in error using
expander walks and its dependence on the spectral gap
was found by Gillman [1].

Graphs used in this paper were introduced in [2]. Other
constructions based on similar idea were presented in [3].
However, the girth of presented graphs is 6 and 8 (The-
orem 1 and Theorem 2, [2]) and the girth of graphs pre-
sented in [3] is 6. This allow us to construct LDPC codes
from presented graphs. Theorem introduced in [2] were
included without proofs. We introduce this theorems with
proofs in Section 3. It is very important for construction
of LDPC codes that graphs which we use must have girth
g > 6.

Throughout this paper only undirected, simple graphs
without loops or multiple edges are considered. A graph
is connected if for arbitrary pair of vertices vy, vo there
is a path from v; to vys. The length g of the shortest
cycle in a graph is called a girth, [4]. Bipartite graph
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is a graph whose vertices set V' can be divided into two
disjoint subsets V7 and V5 such that every edge connects
a vertex in V7 to one in V5. We refer to bipartite graph
I'(V1UV4, E) as biregular one if the number of neighbours
for vertices from each partition sets are constants s and
t (bidegrees). We call a graph regular in the case s = t.
Missing definitions can be found in [5, 6].

We say that a family of regular graphs of bounded de-
gree ¢ of increasing order n has an expansion constant c,
¢ > 0 if for each subset A of the vertex set X, |X| =n
with |A] < n/2 the inequality |0A| > c|A| holds, [7]. The
expansion constant of the family of ¢g-regular graphs can
be estimated via upper limit ¢ — \,,, n — oo, where A,
is the second largest eigenvalue of family representative
of order n. The first explicit expander graph family was
constructed by Gregory Margulis in the 1970’s via studies
of Cayley graphs of large girth [8].

By the theorem of Alon and Boppana, large enough
members of an infinite family of d-regular graphs with
constant d satisfy the inequality A > 2v/d—1 — o(1),
where ) is the second largest eigenvalue in absolute value.
Ramanujan graphs are d-regular graphs for which the in-
equality A < 2v/d — 1 holds. It is clear that a family of
Ramanujan graphs of bounded degree ¢ has the best ex-
pansion constant, [9].

Regular generalized polygons are one of the best ex-
panders. They are regular tactical configurations of di-
ameter m and girth 2m. For each parameter m, a regular
generalized m~gon has degree ¢ + 1 and order 2(1 4+ ¢ +
g™ h), [10].

However, according to the famous Feit-Higman theo-
rem the regular thick (i.e. degree > 3) generalized regular
m-gons exist only for m = 3,4 and 6, [11]. Thus General-
ized Pentagon does not exist, in particular. We have the
following properties of generalized regular polygons:
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e the incidence graph of a projective plane
PG(2,q) has |V| = v(qg+1,6) = 2(1 + ¢ + ¢?)
and g = 6,

e the incidence graph of a generalized quadrangle
GQ(q,q) has |V| = v(q+1,8) = 2(1+q+¢*+¢*)
and g = 8§,

e the incidence graph of a generalized hexagon
GH(q,q) has |V| = v(¢+1,12) = 2(1 + ¢ +
P+ +q¢"+4¢°) and g =12.

By v(q,g) we denote a Moore graph which is a regular
graph of vertex degree ¢ > 2 and girth g that contains
the maximum possible number of nodes. For practical
applications it is very important to create families of ex-
pander graphs with other parameters. For now we create
a families of expander graphs of unbounded degree but
only two of them are investigated until now. In [2] we
introduced this new structures. This construction can be
extended for arbitrary large parameter n which yield us to

connected ¢+ 1 regular graphs of order 2(1+¢+...+¢"1).

2 Construction of the families

In [12] the incidence structures corresponding to gen-
eralized polygons were considered. Recently we use the
concept of a root system ¢ which is a configuration of vec-
tors in a Euclidean space satisfying certain geometrical
properties. In [2] we created a graphs having interesting
properties by using root system and special binary oper-
ation, we only consider cases for n = 3,4,5 and for n > 6
the work is in progress.

In our construction we simplify the concept used in [12].
We redefined used operators and introduced new algo-
rithm to choose a set of positive roots. There is only one
3-element set QS;[ = {a1, 9,1 + az}. The sets qb;f con-
sisting four elements are two: {a1, ag, a1 + e, 201 + as}
and {a1,as, a1 + as, a1 + 2as}, but they are symmetric
and give the same results. There are three ways to choose
non-symmetric sets ¢;: {a1, 00,01 + g, 201 + @z, 01 +
20[2}, {Oél, g, X1 +Ot2, 20[1 +OLQ, 20[1 +20¢2}, {0417 g, 1 +
a9, 201 + g, 31 + s }. For n = 3 this construction yields
projective plane which is commonly known. For n = 4 the
set of roots is the same as for generalized quadrangle but
we obtain two structures witch different properties. For
n = 5 the set gb;' can not be derived from Cartan ma-
trix and we obtained over a dozen new structures with
different properties.

Before we introduce incidence relations in obtained
graphs we will describe the set of vertices. Let
I'(n,¢; ,F,) denote bipartite graph obtained by using
n-element set ¢, scalars from F, and binary operator
(+,+). Traditionally in geometrical bipartite graphs one
set of vertices is called set of points P and another one
set of vertices is called set of lines L.

15

First, let us consider an ordinary n-gon as a bipartite
graph with vertex set V.= PUL = {(1),(2),...,(n)} U
{[1,2],[2,3],...,[n — 1,n],[n,1]}. We can write the inci-
dence relation I in n-gon as follows:

(m)I[s,t] <= m=sVm=t.

A line is incident with point if this point belong to this
line. Let vertex of type t; be define as vertex correspond-
ing to i-element subset of ¢}, i = 0,1,2,...,n — 1 and
let A; denote i-element closed subset of ¢,". We create
two ascending sequences of closed subset of ¢. Second
element of first sequence is {a;} and for second sequence
second element is {2 }:

Ag={0} C Ay ={ao} C A3 C A3... C A1 = ¢ \{an},
By = {(Z)} C B; = {al} C By CBs...CBp—1 = ¢:§\{042}

For bigger n set ¢;7 has more roots and above sequences
can be chosen in many ways.
ments from this two sequences alternately we create set
of points and set of lines. For lines we choose a sets:
By = {0}, Ay = {aa}, B2, As, ..., ¢ \{a;} and for points
AO = {@},Bl = {al},A%Bg,...,qﬁ:[\{ai}, where i = 1
and j =2 if nis odd and i = 2 and j = 1 if n is even.
Let F,, where g is prime power, be a finite field. The
the number of vertices in obtained graph I'(n, ¢, F,) is
[Vl =2(1+q+¢*+...+q" ). The graph is bipartite
V = PUL and set V consist of:

2 elements of type to—((1), a}) and [[1,2], a3],

2q elements of type t1—((2),af + p1aq) and [[1,2], ad +
L],

Now, we choosing ele-

2¢*> elements of type to—((n),a + Y. paa) and
acAsy
(2,3, a1 + 2 lad,
a€Bs
2¢"! elements of type t,—1—(([222]) + > pac)

acdi\{ai}

and
>

[L252), 1252 )]+
o€\ os)

where 1 =1 and j =2ifnisodd and i =2 and j = 1
if n is even and p,, ln € F,;. Brackets and parenthesis
will allow the reader to distinguish points (-) and lines
[[]- The set of edges consisting of all pairs {(p),[I]}
for which (p)Ir[l]. The incidence relation Ir for the
graph T'(n,¢™,F,) are defined as follows. Let 11 and )9
be a closed subset of the set of positive roots ¢ and
let 3, and ¥; be a linear combination of elements of
set 11 and vy accordingly, with scalars from F,. Point
(p) = ((m), aj +%,) is incident to line [I] = [[s, ], o] + 3]
( we denote it by (p)I [1] ) if and only if

la()l],

(m=svVm=t)A((ef +3p 0} + %) 0).

1
It is easy to see that this is symmetric incidence relation
(the graphs are simple). This construction allowed us to
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obtain new structures similar in some aspect to general-
ized polygons but in general with different properties.

In Table 2 we present incidence relations for graph
I'(4,¢5,F,) when sequences of closed set are following
{011} C {011, 2001 —|-012} C {al, 2001 + @i, q —|—O¢2}, {052} C
{Otl,Oél + 042} C {042, a1 + as, 204 + 042}.

In Table 3 we present incidence relations for graph
I'(5,{a1}, {a1 + a2}, {201 + a2}, {oq + 202}, F,) and se-
quences: {a1} C {a1,201 + as} C {1,201 + ag, a1 +
as} C {a1,2a1 + ag,a1 + az, a1 + 202} and {a} C
{aq, a1 + 202} C {ag, a1 + 209,01 + s} C {ag, a1 +
209,01 + a9,2a1 + 2a5} In this case we obtained \; <
2,/q. For this chooses we obtained better results than
other possibilities and only their are in consideration in
this article.

TABLE 1. Incidence relations for graph
(3,65 ,F,) = PG(2,q)

((1),0) | ((2),p1) ((3),p1,p2)
[[1,2],0] + + -
[13,1], 1] + — +:ip1=1h
[[2,3]711712] — —+ p1 = ll 4+ 12 — P2 = llpl

TABLE 2. Incidence relations for graph

F(47 (Zﬂ_» Fq)
((1),0) | ((2);p1) | ((4),p1,p2) | ((3),p1,p2,P3)
[[1,2],0] + + — —
[[47 1]711] + - +:lh=p —
([2,3],11,12] - + - +p=h
p1=1Uh p2 —l2 = psh
[[34]11.1}[3] — — +ZP1=Z1, +212—P2=P111»
p2 =l I3 —p3 =pila

TABLE 3. Incidence relations for graph

(5,05, Fy)
((1),0) | (2)p1) | ((5),p1,p2) ((3),p1,p2, p3) ((4). p1,p2.P3, P4)
2 N N B B -
0
[1.5] + - +ipi=h - -
I
[ (23]
I - +: - +ipi=h -
Iy
p1i=1h P2 — I = psh
+ipi=h, +:ip =1,
4,51
;: - - p2—l=pls - p2 =l =pils + psh
I3
p3=13
+ipr=1, +ip2—la=lap1,
13,4]
ll
Iz - - - p2— b =pils +psh p3—ls=lp
I3
ly
p3s=1l3 pa—la=lps
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3 Comparison with previously known
results

Expanding and other properties are following. The
families T'(n, ¢, , F,) consist of bipartite graphs with |[V] =
2(1+q+q¢*+. . .+q") vertices and (¢+1)(1+q+¢*+. . .+q")
edges. A sparse graph has a small number of edges in com-
parison to the number of vertices. A simple relationship
describing the density of the graph I'(V, E) is

2|E|
W VIvi- 1
where |E| is the number of edges of graph I' and |V is
the number of vertices. The maximal density is D =1

when a graph is complete and the minimal density is 0
(Coleman & Moré 1983).

TAaBLE 4. Comparison between pre-
sented families and generalized regular
polygons for n = 3,4,5

Graph Regularity (V]| Girth A
PG(2,q) = q+1 2(1+q+q¢?) 6 Va
r(G,45,Fy)

GQ(g,9) g+1 20+9+¢+4¢°) 8 V2q
T(4,65,F) | aq+1 2(1+q+4¢°+¢°) 6 3q
generalized do not exist

pentagon

(5,05, F) [ q+1 [20+¢+P+75+¢)] 8 [<2q

I'(n,¢;,F,) are g + l-regular, sparse graphs and the
density according to (1) is
qg+1
2+ ... +¢") +1
Each of the representatives of the presented family is ¢ +
1-regular graph so the first eigenvalue of the adjacency
matrix, corresponding to this graph, is A\g = ¢ + 1. Let

us denote the second eigenvalue by A1 = maxy,2q41 |Ail-
Tab. 4 present comparison between presented families
and generalized regular polygons for n = 3,4, 5.

The graphs I'(4, ¢1, F,) have a structure which is some
aspects similar to generalized quadrangle. They are g + 1
regular graphs and have the same number of vertices.
However, he constructed graphs for n = 4 are not isomor-
phic to generalized quadrangles. In [2] we showed that
second largest eigenvalue of graph I'(4, ¢, F,) is /3¢ (for
q=3,4,5,7,8,9,11,13,16,17,19,23). The second largest
eigenvalue of regular generalized quadrangle is 1/2¢ for ar-
bitrary ¢q. What’s more generalized quadrangle has girth
8 and graphs I'(4, ¢1,F,) has girth 6. There is an conjec-
ture that \; = /3¢ for graph I'(4, ¢, ,F,) for arbitrary
large ¢, [2]. The following conclusion can be drawn from
this observation.

Corollary 1. The graphs I'(4, ¢, F,) are not isomor-
phic to generalized quadrangles.
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Let us prove the theorems introduced in [2].

Theorem 1. Family of graphs I'(4, ¢, F

of graphs of girth 6.

) is a family

Proor. Graphs I'(4, ¢, ,F,) are bipartite so there is
no cycle C3 and C5. Each vertex of type ¢; have ¢ neigh-
bours of type try1 and one each vertex have four neigh-
bour of type ty_1, for Kk = 1,2. Each vertex of type t3
have ¢ neighbours of type t3 and one each vertex have
four neighbour of type to. Because of the structure of this
family we can consider only three possibilities of form of
the cycle Cy:

(1) There exist a cycle Cy passing through two
points of type t3 and two lines of type t3. Let
us note that incidence relations among vertices
of type t3 are the same as incidence relations
among vertices in graph D(3,q), [13]. From
[13] we know that the girth of graphs D(3,q) is
8 so cycle of such type do not exist.

There exists two points (p) of type t2 and (p) of
type t3 which have two common neighbours of
type ts: [I], [I], such that [I] # [I]. Cycle C4 has
a form (p)I[I]I(H)I[I]I(p). If cycle of such type
exist then:

(DIl & ((4), 51, 92)[[3,4], 11,12, 3] & pr = L A pa = I,

MMl < ((4),p1,P2)1([3,4], 11, 12, [5] & pr = 1 A pa =,
(B)I[I] < ((3), B1, P2, 53)I([3, 4], 11, lo, 13] =
((3) p17p27p3) {[374]71).171).27[3} <
(o =
Is—p3s = pip2
Is = pipa + P,

BT < ((3), 1. P2, Bo) (13, 4], 11, T2, Is]
((3)7p17p27p3)l[[3a 4]7p17p27 l3} <
{ b2 — P2 p1p1 N
I3 — ps D1D2
Is = p1p2 + Ps.

We obtain dependence [} = 1 Aly = Iy Al3 =

I3 < [I] = [l]. This contradicts our assumption

that [I] # [l]. Therefore the initial assumption

that such type of cycle Cy4 exist must be false.
(3) There exists two lines [I] of type t5 and [I] of type

t3 which have two common neighbors of type t¢3:

(p), (p), such that (p) # (p). Cycle C4 has a

form [I]1(p)I[)I(H)I[]] If cycle of this type exist
then:

[11(p) < [12,3], 11,121 ((3), 1, P2, Pis) <
L =p1 Ap2 — la = pals,

[11(5) & [12,3], 11, 2] T((3), 1, o, 3) ©
li = pi Apa — Iy = pili,

17

[1(5) < [[3,4), 11, b2, 5] 1((3), P, P, s) =
[13,4], 01, 2, I3]1((3), [y, P2, 13)
(b - i
ls—ps = Il
{m = L-hh
p3 = lz—1laly '

[1(5) < [[3,4], 11, o, [3]1((3), B, o, 13) =
(8,4], 11, 12, I3]1((3), 11, P2, P3) <>

Iy — P Il
{ Is—ps = Iy
{m = Lb—hh
p3 = I3 —1laly
We obtain dependence p; = 1 A pa = Pa A pg =

p3 < (p) = (p) This contradicts our assumption
that (p) # (P). Therefore the initial assumption
that such C, exist must be false.

47 Qﬂ_’ Fq

For an arbitrary prime power ¢ in I'( ) there is

a cycle of length 6:
[[3,4],0,0,1]1((4),0,0)1[[3,4],0,0,0]1((3),0,0,0)

11[2,3],0,01((3),0,0,1)1[[3, 4], 0,0,1].
]

Analogous proof can be performed for the graph

L(5, 5, F,).

Theorem 2. Family of graphs I'(5, ¢, F,,

of graphs of girth 8.

) is a family

PROOF. Graphs I'(5, ¢, F,) are bipartite so there is
no cycle Cs, C5 and C7. This graphs have representation
as symmetric adjacency matrices so without loss of gener-
ality we can consider only two possibilities of form of the
cycle Cy:

(1) There exist a cycle C; passing through two

points of type t4 and two lines of type t4. How-
ever, if we rewrite relations among vertices of
type t4 as follows: p3 := pa, p2 := pa, ps 1= ps,
l3 := g, I3 := I3 we obtain the same relations
as among vertices in graph D(4,q), [13]. From
[13] we know that the girth f graphs D(4, q) is
8 so cycle of this type do not exist.
There exist a cycle C; passing through two
points of type t3 and two lines of type t4. Let
us note that incidence relations among vertices
of type t3 are the same as incidence relations
among vertices in graph D(3,q), [13]. From
[13] we know that the girth f graphs D(n,q) is
8 so cycle of such type do not exist.

(P[] < ((3), 11,72, 03)1[[3,4], 11,12, I3, 14] <
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po=h_
p2—ly = pils+psh
p3 = I3

B)I[] < ((3),P1, P2, P3)1[[3, 4], [1, bo, I3, 1] &

po=h
p2—la = pils+psh
p3 = I3

Hence l; = I, I5 = I3 and I = Iy = 5.
B)I[1] & ((4), 51, P2, 53)1[[3, 4], 11, 12, I3, [a] <
((4), v, a2, 53) 1[[3, 4, P, Lo, Ps, la] =
P2 — lu = p1ps
B[] & ((4),P1, P2, 53)1[[3, 4], 11, I2, I3, 4] <
((4), v, 2, P3) I[[3, 4], pr, Ia, Pa, La] =

B2 — Iy = pipis
We obtain dependence l.l = l'i A l'2 = lg A l}, =
IsAly =1, < [I] = [I]. This contradicts our
assumption that [I] # [I]. Therefore the initial
assumption that such type of cycle Cy exist must

be false.

Because of the symmetric nature of this family we can
consider only four possibilities of form of the cycle Cg:

(1) There exist a cycle Cg passing through three
points of type t4 and three lines of type t4. How-
ever, if we rewrite relations among vertices of
type t4 as follows: p3 := pa, p2 = pa, ps := p3,
l3 := g, Iy := I3 we obtain the same relations
as among vertices in graph D(4,q), [13]. From
[13] we know that the girth f graphs D(4,q) is
8 so cycle of this type do not exist.

(2) There exist cycle Cg contained point (p) =
((3),p1,p2,p3) of type t3, two points (p) and
() ((p) # (p)) of type t4 and three different
lines [1], [1],[I] of type t4. Cycle Cs has a form
(p) I[N (P)INI(H)I[IJI(p). Tf cycle of this type

exist then:
(p)l[l] g ((3)7p17p2ap3)1[[37 4]) l17 l27 l37 lﬁd =

mo= b

p2—la = pils+psh
ps = I3
po=h

p2—lp = pils+psl
p3 = I3

and we see that [; = [, = p1, I = Iy = I,
I3 =13 = ps.
[Z]I(p) = [[3,4],ll,lg,l3,14]1((4),]51,]52,]53,]§4) <~

18

P2 — Iy pil3
p3—Is = pili ,
Pa—lo = psly
[I]I(p) = [[Sa 4]3 ll, l27 13, l4]I((4)aplap27p3ap4) ~
P2 —ls = pil3
p3—Il3 = pily ,
Pa—1la = p3l

(B[] < ((4), 51, P2, 53, 54) I[[3, 4], 11, lo, I3, 1] =

((4),P1, P2, D3, Da) I([3, 4], p1, 2, p3, la] =

Pa — Iy D1P3
Ps—p3s = pip1 o,
Ps—1la = papr

B[] < ((4), 51,52, 53, 50) I[[3, 4], 1, Ia, 3, [a] =

((4)7p17p25p35p4)1[[374]7])17ZAQap?n l4] g

Po—ly =

P1p3
Ps—1ly = pap:

We can write variables p3 and p3 in two ways:
p3 = I3+ p1li = p3 + p1ip1,

p3 =ls +pili = ps + pipa,

It is easy to see that p; = p;1 and p3 = p3. There-
fore po = pa, ps = ps. We obtain that (p) = (p).
This contradicts our assumption that (p) # (p).
Therefore the initial assumption that such Cg
exist must be false.

Between point (p) = ((3),p1,p2,p3) of type t3
and line [I] = [[4,5],11,12,13] of type t3 there
exist two different paths: [IJI(p)I[]]I(p) and
WIGTI(), where () # (5), i} # [] and
(»), (), [1],]]] are of type t4. Cycle Cs has a
form [1J1(p)I[IJI(p)I[[)I(p)I]l]. If cycle of this
type exist then:

[l]I(p) e [[43 5]7lla127Z3}I((4)7p.1ap.23p.3ap4) g

p1 o= kL

p2—lz = ps3li+pils
p3 = I3
p1 = b

p2—lo = p3li+pilz
p3 = I3

and we see that p1 = p1 = [y, po = P2 = po,
p3 = p3 = I3.

()] < ((3),p1,p2, p3)I[13,4], 11, 12, I3, 1] <

pmo=h
p2—la = pshi+pils
p3 = I3

(I < ((3),p1,p2, p3) 13,4, 11, 2, I3, 14]) <
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= I

D1
po—ly = psly+pils
b3 = fé
and we see that [} = [; = p1, lb = o = I,
I3 = I3 = ps.

(D)I[I] & ((4), p1, P2, 3, D) I[[3,4], 11, 1o, 13, s] &
((4), 11, P2, 13, pa)I[[3,4], p1, b2, p3, la] =
lips

P2 — s
P — I I3p1

(D[] < ((4), 51, P2, b, pa) I[[3, 4], 1, Ia, I3, [] &
((4)7 llapAQa l3ap4)I[[37 4]7]91, lQapSa l4] =

P2 — l}; lips

pr—lo = Isp
We obtain that p, = py, Iy = Iy so (p) = (p)
and [{] = [I]. This contradicts our assumptions

that (p) # (p) and [I] # [I]. Therefore the initial
assumption that such Cg exist must be false.

There exists point (p) = ((5),p1,p2) of type toa,
which is connected with two lines of type t3:
i), [i) (i) # [i)) and line ] = [3,4), 11, Iz, Is, L]
of type t4 which is connected with two points
of type t (5), () ((5) # (7). We have
(p)Il] and (p)I[l]. Cycle Cs has a form
(p)I[II(P)I[NI(H)I[I)I(p). If cycle of this type

exist then:
(P)I[I] < ((5), p1,p2)I[[4,5], 11,12, 15] <
{ mo= 0
p2—la = I3ps
{ o= h
p2—lo = lsp1
[Z]I(p) <~ [[475]3ll7l27l3]1((4)7p17p27p37p4) <~
pro= b .
p2—la = pshi+pils
p3 = I3
II(p) < [[4.5], 11, I, I5] T ((4), 1, P2, B3, 1) <
pro= L
Po—lo = pali+pils
p3 = I3
From the above equations we obtain p; = p; =
L=l =p:.

[Z]I(p) g [[3,4},[1,lg,lg,14]1((4)7p1,]j2,]j3,]j4) g
[[374]7lla127l3al4]I((4)7p17p27p37p4) <~

P2 —ls = lsp1
p3—Il3 = hLp
pa—Ils = Lps

NI(D) < [[3,4], 11, 12,13, 14]I((4), P1, P2, D3, Pa) &
[[3,4],l1,lg,l3,l4]1((4),p1,15'2,p23,13}1) ~
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P2 —1ls = lIspy
Ps—Il3 = hp
pa—l3 = L3

We see that (pa = pa A ps = p3) = ps = Py and
so (p) = (p). This contradicts our assumption
that (p) # (p). Therefore the initial assumption
that such Cg exist must be false.

Graph D(5,q) is a subgraph of I'(5, ¢3, F,). For an arbi-
trary ¢ > 2 graph the girth of graph D(5,q) is 8 and so
the girth of graph I'(5,¢7,F,) is 8 and it has a cycle of
length 8. O

The graphs I'(n, ¢}, F,) for arbitrary n, ¢ are con-
nected. What more we have conjecture that the families
is ¢ + 1-connected, namely highly connected. A graph is
said to be k-connected when there does not exist a set
of k — 1 vertices whose removal disconnects the graph.
The connectivity of graphs is important property used in
many practical and theoretical aspects. If (for fixed n)
we remove vertices of type ¢, from graph I'(n, ¢, , F,) we
obtain a tree.

4 Corresponding LDPC codes

An error-correcting code is an algorithm for express-
ing a sequence of numbers such that any errors which are
introduced can be detected and corrected based on the re-
maining numbers. This techniques enable reliable delivery
of digital data over unreliable communication channels.
To a k bits message are added r extra bits-redundant
data. As a result of this action we get the codewords
y € C of the length N. Such a code has r = N — k parity
checks equations and is denoted by [N, k]. The ratio k/N
is called code rate and is denoted by R¢.

LDPC code is one of the powerful class of error cor-
recting codes, which was discovered by Robert Gallanger
in his work Low-Density Parity-Check Codes [14]. They
were forgotten for twenty years to get back in the nineties,
for example see [15, 16, 17]. The ability to use graphs in
construction of LDPC was first discussed by [18]. Con-
struction of Tanner type codes based on the expander
graphs was considered for example by Sipser and Spiel-
man [17], Guinanad and Lodge [19]. In this paper we
present irregular low-density parity-check (LDPC) codes
which exhibit a performance extremely close to the Shan-
non limit. Irregular LDPC codes were introduced in [20,
21| and were further studied in [22, 23]. For such an
irregular LDPC code, the degrees of each set of nodes are
chosen according to some distribution. In case of regular
LDPC codes the degree of each variable node is equal r
and the degree of each check node is equal s. The corre-
sponding Tanner graph is biregular (r, s). In the case of
irregular codes the weight of rows and columns are varied.
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An irregular LDPC code might have a graphical repre-
sentation in which the set of variable nodes or the set of
constraint nodes may be divided into subsets of different
degree.

There are three ways to represent linear error correcting
code allowing us to obtain LDPC codes: generator matrix
G, parity check matrix H or Tanner graph I'(V, E'). There
is a standard way to create LDPC codes from bipartite,
Tanner graph. Parity check matrix H and adjacency ma-
trix A for used graph are dependent:

0 H
()

Presented construction leads us to families of graphs
that can be successfully used in coding theory to create
LDPC codes because they: are simple undirected graphs,
do not have cycles of length less than 8, have structures
that allow us to obtain arbitrary code rate R, work with
existing decoding algorithm, have representation as very
sparse matrices H.

Our simulations were done using BPSK modulation
over AWGN channel and simple belief-propagation (BP)
decoder implementation with 10 iterations. Efficacy BP
algorithm is only slightly worse than the optimum MAP
decoding. Let y be the received codeword. MAP decoder
works accordingly to the rule which returns an output
value & of a code word x for which the a posteriori prob-
ability P = (z|y, H) is maximized. BP algorithm consists
in calculating the approximate values of the a posteriori
probabilities P = (x;|y, H) for the different receiver bits
of the codeword z until the hard decisions taken on the
basis of these probabilities will indicate one of the possible
code words or the maximum number of iterations will be
reached. The use of iterative decoding is especially useful
in the case of LDPC codes as the computational com-
plexity of the decoding process for sparse matrix depends
linearly on the length of the codeword.

Obtained graphs are ¢ + 1 regular and |P| = |L|. To
create LDPC code the number of vertices in one parti-
tion set should be much less than the in second one (for
example |P| < |L|). We can use method described in
[24] for graphs D(n,q). To obtain bipartite graph with
|P| < |L| we must put restriction on coordinates of points.
Let E C F, be an e-element subset respectively and let
Vp and Vi, be sets of points and lines in a new bipartite
graph. They are the following sets:

Ve ={(p) € Plp2 € E},
Vi = {[l] € L| deg([l]) = 2}
The bigger set Vi, corresponds to codeword bits and the
smaller Vp to parity checks. By this algorithm we obtain
irregular LDPC codes. This irregular LDPC codes have
a graphical representation in which one part of variable
nodes have degree |E|,second part have degree |E|+1 and
third part have degree ¢ + 1.
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TABLE 5. Properties of graphs used for
presented in figures sample codes if py €

E
Number | Number
Initial FE of lines of points | Code
graph in used in used rate
subgraph | subgraph
(4,95, Fs) | {0,1} 138 66 ~ 0.52
4,65 ,F7) | {0,1} 360 120 0.(6)
(4,97, F7) | {0,1,2} 368 176 ~ 0.52
(4,65, F1) | {0,1,2,3,4} | 1392 672 0.52
I'(5,63,F5) | {0,1} 682 311 ~ 0.55
(5,98, F7) | {0,1} 2516 806 ~ 0.68
(5,98, F7) | {0,1,2} 2573 1205 ~ 0.53

Bit Error Rate

—— [138,72] code
—B— [360,240] code
—6— [368,192] code
—— [1392,720] code

BER

i i i i i i i

1.5 2 25 3
Eb/No (dB)

4.5

FIGURE 1. Bit error rate for codes based
on I'(4, (va]Fq)

Bidegree reduction can only increase the girth so there
is no short cycles. After bidegree reduction the graph may
be disconnected and divided into several components. To
create a parity check matrix we use only one component.
We decide to put one or zero in a parity check matrix
by checking if relations presented in Tab. 2 or Tab. 3
among coordinates for each point and line are satisfied.
Tab. 5 presents properties of example codes obtained
from graphs I'(4,¢7,F,) and I'(5,¢3,F,). Fig. 1 and
Fig. 2 show Bit Error Rate for this representatives.
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