On a variant of Jessen–Mercer’s inequality

Zdzisław Otachel

Abstract


A new variant of Mercer’s inequality [A.McD. Mercer, A variant of Jensen’s inequality, J. Inequal. Pure Appl. Math. 4(4) (2003) Article 73] of Jessen’s type is given. Moreover, versions of Chebyshev’s inequality and Hardy–Littlewood– Pólya inequality for some abstract nonnegative linear functionals are obtained.

Keywords


Convex function; Jensen’s inequality; Jessen’s inequality; Chebyshev’s inequality; Hardy–Littlewood–Pólya inequalities; Jessen-Mercer’s inequality; similarly ordered functions; linear means

Full Text:

PDF

References


Abramovich, S., Klaricić Bakula, M., Matić, M., Pecarić, J., A variant of Jensen–Steffensen’s inequality and quasi-arithmetic means, J. Math. Anal. Appl. 307 (2005), 370–386.

Abramovich, S., Klaricić Bakula, M., Banić, S., A variant of Jensen–Steffensen’s inequality for convex and superquadratic functions, J. Inequal. Pure Appl. Math. 7(2) (2006), Article 70.

Abramovich, S., Barić, J., Pecarić, J., A variant of Jessen’s inequality of Mercer’s type for superquadratic functions, J. Inequal. Pure Appl. Math. 9(3) (2008), Article 62.

Klaricić Bakula, M., Matković, A., Pecarić, J., Variants of Cebysev’s inequality with applications, J. Inequal. Appl. (2006), Article 39692.

Klaricić Bakula, M., Matković, A., Pecarić, J., On the Jensen–Steffensen inequality for generalized convex functions, Period. Math. Hungar. 55(1) (2007), 19–34.

Barić, J., Matković, A., Pecarić, J., A variant of the Jensen-Mercer operator inequality for superquadratic functions, Mathematical and Computer Modelling 51 (2010), 1230–1239.

Barnett, N. S., Cerone, P., Dragomir, S. S., Majorisation inequalities for Stieltjes integrals, Applied Mathematics Letters 22 (2009), 416–421.

Cheung, W. S., Matković, A., Pecarić, J., A variant of Jensen’s inequality and generalized means, J. Inequal. Pure Appl. Math. 7(1) (2006), Article 10.

Dragomir, S. S., Some majorisation type discrete inequalities for convex functions, Math. Inequal. Appl. 7(2) (2004), 207–216.

Gavrea, I., Some considerationsons on the monotonicity property of power means, J. Inequal. Pure Appl. Math. 5(4) (2004), Article 93.

Hardy, G. H., Littlewood, J. E., Pólya, G., Some simple inequalities satisfied by convex functions, Messenger Math. 58 (1928/29), 145–152.

Horvat, L., Some notes on Jensen–Mercer’s type inequalities; extensions and refinements with applications, Math. Inequal. Appl. 24(4) (2021), 1093–1111.

Jensen, J. L. W. V., Sur les fonctions convexes et les inequalites entre les valeurs moyennes, Acta Math. 30 (1906), 175–193.

Jessen, B., Bemaerkinger om konvekse Funktioner og Uligheder imellem Middelvaerdier I, Matematisk Tidsskrift. B (1931), 17–28.

Maqsood Ali, M., Khan, A. R., Generalized integral Mercer’s inequality and integral means, J. Inequal. Spec. Funct. 10(1) (2019), 60–76.

Matković, A., Pecarić, J., Perić, I., A variant of Jensen’s inequality of Mercer’s type for operators with applications, Linear Algebra Appl. 418 (2006), 551–564.

Matković, A., Pecarić, J., A variant of Jensen’s inequality for convex functions of several variables, J. Math. Inequal. 1(1) (2007), 45–51.

Matković, A., Pecarić, J, Perić, I., Refinements of Jensen’s inequality of Mercer’s type for operator convex functions, Math. Inequal. Appl. 11(1) (2008), 113–126.

Mercer, A. McD., A variant of Jensen’s inequality, J. Inequal. Pure Appl. Math. 4(4) (2003), Article 73.

Niculescu, C. P., Popovici, F., The extension of majorization inequalities within theframe of relative convexity, J. Inequal. Pure Appl. Math. 7(1) (2006), Article 27.

Niezgoda, M., Remarks on convex functions and separable sequences, Discrete Math. 308 (2008), 1765–1773.

Niezgoda, M., A generalization of Mercer’s result on convex functions, Nonlinear Anal. 71(7–8) (2009), 2771–2779.

Niezgoda, M., A generalization of Mercer’s result on convex functions II, Math. Inequal. Appl. 18(3) (2015), 1013–1023.

Otachel, Z., Chebyshev type inequalities for synchronous vectors in Banach spaces, Math. Inequal. Appl. 14(2) (2011), 421–437.

Otachel, Z., Synchronous sequences and inequalities for convex functions, Appl. Math. Comput. 247 (2014), 865–871.

Otachel, Z., Fujiwara’s inequality for synchronous functions and its consequences, Biom. Lett. 60(2) (2023), 159–175.

Pecarić, J. E., Proschan, F., Tong, Y. L., Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Inc., Boston, MA, 1992.

Zalinescu, C., Convex Analysis in General Vector Spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.




DOI: http://dx.doi.org/10.17951/a.2025.79.1.%25p
Date of publication: 2025-07-31 20:53:35
Date of submission: 2025-07-24 09:56:39


Statistics


Total abstract view - 3
Downloads (from 2020-06-17) - PDF - 2

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Zdzisław Otachel